【人工智能課程】計(jì)算機(jī)科學(xué)博士作業(yè)一
1 任務(wù)要求
- 模型擬合:用深度神經(jīng)網(wǎng)絡(luò)擬合一個(gè)回歸模型。從各種角度對其改進(jìn),評價(jià)指標(biāo)為MSE。
- 掌握技巧:
- 熟悉并掌握深度學(xué)習(xí)模型訓(xùn)練的基本技巧。
- 提高PyTorch的使用熟練度。
- 掌握改進(jìn)深度學(xué)習(xí)的方法。
數(shù)據(jù)集下載:
- Kaggle下載數(shù)據(jù):
https://www.kaggle.com/competitions/ml2022spring-hw1
- 百度云下載數(shù)據(jù): https://pan.baidu.com/s/1ahGxV7dO2JQMRCYbmDQyVg (提取碼:ml22)
這是一個(gè)非時(shí)間序列的回歸任務(wù),預(yù)測公共場所獲取的人群數(shù)據(jù),預(yù)測會(huì)發(fā)生COVID-19陽性的人數(shù)。改進(jìn)角度,參考博客:
2 baseline 代碼
我將老師給的代碼重構(gòu)了結(jié)構(gòu),便于組員之間協(xié)作編程,無需修改的代碼都放到了utils.py中。只需要修改特征選擇、神經(jīng)網(wǎng)絡(luò)、模型訓(xùn)練部分的代碼就可以。
2.1 導(dǎo)入包
# 數(shù)值、矩陣操作
import math
# 數(shù)據(jù)讀取與寫入make_dot
import pandas as pd
import os
import csv
# 學(xué)習(xí)曲線繪制
from torch.utils.tensorboard import SummaryWriter
from utils import *
2.2 數(shù)據(jù)讀取
# 設(shè)置隨機(jī)種子便于復(fù)現(xiàn)
same_seed(config['seed'])
# 訓(xùn)練集大小(train_data size) : 2699 x 118 (id + 37 states + 16 features x 5 days)
# 測試集大小(test_data size): 1078 x 117 (沒有l(wèi)abel (last day's positive rate))
pd.set_option('display.max_column', 200) # 設(shè)置顯示數(shù)據(jù)的列數(shù)
train_df, test_df = pd.read_csv('./covid.train.csv'), pd.read_csv('./covid.test.csv')
display(train_df.head(3)) # 顯示前三行的樣本
train_data, test_data = train_df.values, test_df.values
del train_df, test_df # 刪除數(shù)據(jù)減少內(nèi)存占用
train_data, valid_data = train_valid_split(train_data, config['valid_ratio'], config['seed'])
# 打印數(shù)據(jù)的大小
print(f"""train_data size: {train_data.shape}
valid_data size: {valid_data.shape}
test_data size: {test_data.shape}""")
2.3 特征選擇
def select_feat(train_data, valid_data, test_data, select_all=True):
'''
特征選擇
選擇較好的特征用來擬合回歸模型
'''
y_train, y_valid = train_data[:,-1], valid_data[:,-1]
raw_x_train, raw_x_valid, raw_x_test = train_data[:,:-1], valid_data[:,:-1], test_data
if select_all:
feat_idx = list(range(raw_x_train.shape[1]))
else:
feat_idx = [0,1,2,3,4] # TODO: 選擇需要的特征 ,這部分可以自己調(diào)研一些特征選擇的方法并完善.
return raw_x_train[:,feat_idx], raw_x_valid[:,feat_idx], raw_x_test[:,feat_idx], y_train, y_valid
# 特征選擇
x_train, x_valid, x_test, y_train, y_valid = select_feat(train_data, valid_data, test_data, config['select_all'])
# 打印出特征數(shù)量.
print(f'number of features: {x_train.shape[1]}')
train_dataset, valid_dataset, test_dataset = COVID19Dataset(x_train, y_train), \
COVID19Dataset(x_valid, y_valid), \
COVID19Dataset(x_test)
# 使用Pytorch中Dataloader類按照Batch將數(shù)據(jù)集加載
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
valid_loader = DataLoader(valid_dataset, batch_size=config['batch_size'], shuffle=True, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, pin_memory=True)
2.4 神經(jīng)網(wǎng)絡(luò)
class My_Model(nn.Module):
def __init__(self, input_dim):
super(My_Model, self).__init__()
# TODO: 修改模型結(jié)構(gòu), 注意矩陣的維度(dimensions)
self.layers = nn.Sequential(
nn.Linear(input_dim, 16),
nn.ReLU(),
nn.Linear(16, 8),
nn.ReLU(),
nn.Linear(8, 1)
)
def forward(self, x):
x = self.layers(x)
x = x.squeeze(1) # (B, 1) -> (B)
return x
2.5 模型訓(xùn)練
def trainer(train_loader, valid_loader, model, config, device):
criterion = nn.MSELoss(reduction='mean') # 損失函數(shù)的定義
# 定義優(yōu)化器
# TODO: 可以查看學(xué)習(xí)更多的優(yōu)化器 https://pytorch.org/docs/stable/optim.html
# TODO: L2 正則( 可以使用optimizer(weight decay...) )或者 自己實(shí)現(xiàn)L2正則.
optimizer = torch.optim.SGD(model.parameters(), lr=config['learning_rate'], momentum=0.9)
# tensorboard 的記錄器
# 將 train loss 保存到 "tensorboard/train" 文件夾
train_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'train'))
# 將 valid loss 保存到 "tensorboard/valid" 文件夾
valid_writer = SummaryWriter(log_dir=os.path.join('tensorboard', 'valid'))
if not os.path.isdir('./models'):
# 創(chuàng)建文件夾-用于存儲(chǔ)模型
os.mkdir('./models')
n_epochs, best_loss, step, early_stop_count = config['n_epochs'], math.inf, 0, 0
for epoch in range(n_epochs):
model.train() # 訓(xùn)練模式
loss_record = []
# tqdm可以幫助我們顯示訓(xùn)練的進(jìn)度
train_pbar = tqdm(train_loader, position=0, leave=True)
# 設(shè)置進(jìn)度條的左邊 : 顯示第幾個(gè)Epoch了
train_pbar.set_description(f'Epoch [{epoch+1}/{n_epochs}]')
for x, y in train_pbar:
optimizer.zero_grad() # 將梯度置0.
x, y = x.to(device), y.to(device) # 將數(shù)據(jù)一到相應(yīng)的存儲(chǔ)位置(CPU/GPU)
pred = model(x)
loss = criterion(pred, y)
loss.backward() # 反向傳播 計(jì)算梯度.
optimizer.step() # 更新網(wǎng)絡(luò)參數(shù)
step += 1
loss_record.append(loss.detach().item())
# 訓(xùn)練完一個(gè)batch的數(shù)據(jù),將loss 顯示在進(jìn)度條的右邊
train_pbar.set_postfix({'loss': loss.detach().item()})
mean_train_loss = sum(loss_record)/len(loss_record)
model.eval() # 將模型設(shè)置成 evaluation 模式.
loss_record = []
for x, y in valid_loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
pred = model(x)
loss = criterion(pred, y)
loss_record.append(loss.item())
mean_valid_loss = sum(loss_record)/len(loss_record)
print(f'Epoch [{epoch+1}/{n_epochs}]: Train loss: {mean_train_loss:.4f}, Valid loss: {mean_valid_loss:.4f}')
# 每個(gè)epoch,在tensorboard 中記錄驗(yàn)證的損失(后面可以展示出來)
# 將訓(xùn)練損失和驗(yàn)證損失寫入TensorBoard
train_writer.add_scalar('Train-Valid Loss', mean_train_loss, step)
valid_writer.add_scalar('Train-Valid Loss', mean_valid_loss, step)
if mean_valid_loss < best_loss:
best_loss = mean_valid_loss
torch.save(model.state_dict(), config['save_path']) # 模型保存
print('Saving model with loss {:.3f}...'.format(best_loss))
early_stop_count = 0
else:
early_stop_count += 1
if early_stop_count >= config['early_stop']:
print('\nModel is not improving, so we halt the training session.')
return
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = My_Model(input_dim=x_train.shape[1]).to(device) # 將模型和訓(xùn)練數(shù)據(jù)放在相同的存儲(chǔ)位置(CPU/GPU)
trainer(train_loader, valid_loader, model, config, device)
2.6 模型可視化
%reload_ext tensorboard
%tensorboard --logdir=tensorboard
#執(zhí)行完后這兩行代碼,在瀏覽器打開:http://localhost:6006/
打開后,將smoothing調(diào)為0,就不會(huì)有四條曲線了。如果不改為0,就會(huì)自動(dòng)加入一條平滑后的曲線在圖中,影響觀察。
2.7 模型評價(jià)
model = My_Model(input_dim=x_train.shape[1]).to(device)
model.load_state_dict(torch.load(config['save_path']))
MSE = predict_MSE(valid_loader, model, device)
print("MSE:",MSE)
只跑了10epoch的MSE
MSE: 30.798155文章來源:http://www.zghlxwxcb.cn/news/detail-817676.html
2.8 新建一個(gè)utils.py文件
把以下代碼放進(jìn)去utils.py文件中,放到和以上代碼文件同一級的目錄文章來源地址http://www.zghlxwxcb.cn/news/detail-817676.html
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import numpy as np
from tqdm import tqdm
config = {
'seed': 5201314, # 隨機(jī)種子,可以自己填寫. :)
'select_all': True, # 是否選擇全部的特征
'valid_ratio': 0.2, # 驗(yàn)證集大小(validation_size) = 訓(xùn)練集大小(train_size) * 驗(yàn)證數(shù)據(jù)占比(valid_ratio)
'n_epochs': 10, # 數(shù)據(jù)遍歷訓(xùn)練次數(shù)
'batch_size': 256,
'learning_rate': 1e-5,
'early_stop': 400, # 如果early_stop輪損失沒有下降就停止訓(xùn)練.
'save_path': './models/model.ckpt' # 模型存儲(chǔ)的位置
}
def same_seed(seed):
'''
設(shè)置隨機(jī)種子(便于復(fù)現(xiàn))
'''
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
print(f'Set Seed = {seed}')
def train_valid_split(data_set, valid_ratio, seed):
'''
數(shù)據(jù)集拆分成訓(xùn)練集(training set)和 驗(yàn)證集(validation set)
'''
valid_set_size = int(valid_ratio * len(data_set))
train_set_size = len(data_set) - valid_set_size
train_set, valid_set = random_split(data_set, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed))
return np.array(train_set), np.array(valid_set)
def predict(test_loader, model, device):
model.eval() # 設(shè)置成eval模式.
preds = []
for x in tqdm(test_loader):
x = x.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
preds = torch.cat(preds, dim=0).numpy()
return preds
def predict_MSE(valid_loader, model, device):
model.eval() # 設(shè)置成eval模式.
preds = []
labels = []
for x,y in tqdm(valid_loader):
x = x.to(device)
with torch.no_grad():
pred = model(x)
preds.append(pred.detach().cpu())
labels.append(y)
preds = torch.cat(preds, dim=0).numpy()
labels = torch.cat(labels, dim=0).numpy()
# 計(jì)算MSE
mse = np.mean((preds - labels) ** 2)
return mse
class COVID19Dataset(Dataset):
'''
x: np.ndarray 特征矩陣.
y: np.ndarray 目標(biāo)標(biāo)簽, 如果為None,則是預(yù)測的數(shù)據(jù)集
'''
def __init__(self, x, y=None):
if y is None:
self.y = y
else:
self.y = torch.FloatTensor(y)
self.x = torch.FloatTensor(x)
def __getitem__(self, idx):
if self.y is None:
return self.x[idx]
return self.x[idx], self.y[idx]
def __len__(self):
return len(self.x)
到了這里,關(guān)于【人工智能課程】計(jì)算機(jī)科學(xué)博士作業(yè)一的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!