引言
前面我們已經(jīng)做好了必要的準(zhǔn)備工作,包括對(duì)相關(guān)知識(shí)點(diǎn)的了解以及環(huán)境的安裝。今天我們將重點(diǎn)關(guān)注代碼方面的內(nèi)容。如果你已經(jīng)具備了Java編程基礎(chǔ),那么理解Python語法應(yīng)該不會(huì)成為問題,畢竟只是語法的差異而已。隨著時(shí)間的推移,你自然會(huì)逐漸熟悉和掌握這門語言?,F(xiàn)在讓我們開始吧!
環(huán)境安裝命令
在使用之前,我們需要先進(jìn)行一些必要的準(zhǔn)備工作,其中包括執(zhí)行一些命令。如果你已經(jīng)仔細(xì)閱讀了Milvus的官方文檔,你應(yīng)該已經(jīng)了解到了這一點(diǎn)。下面是需要執(zhí)行的一些命令示例:
pip3 install langchain
pip3 install openai
pip3 install protobuf==3.20.0
pip3 install grpcio-tools
python3 -m pip install pymilvus==2.3.2
python3 -c "from pymilvus import Collection"
快速入門
現(xiàn)在,我們來嘗試使用官方示例,看看在沒有集成LangChain的情況下,我們需要編寫多少代碼才能完成插入、查詢等操作。官方示例已經(jīng)在前面的注釋中詳細(xì)講解了所有的流程??傮w流程如下:
- 連接到數(shù)據(jù)庫
- 創(chuàng)建集合(這里還有分區(qū)的概念,我們不深入討論)
- 插入向量數(shù)據(jù)(我看官方文檔就簡單插入了一些數(shù)字...)
- 創(chuàng)建索引(根據(jù)官方文檔的說法,通常在一定數(shù)據(jù)量下是不會(huì)經(jīng)常創(chuàng)建索引的)
- 查詢數(shù)據(jù)
- 刪除數(shù)據(jù)
- 斷開與數(shù)據(jù)庫的連接
通過以上步驟,你會(huì)發(fā)現(xiàn)與連接MySQL數(shù)據(jù)庫的操作非常相似。
# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python SDK of Milvus.
# 1. connect to Milvus
# 2. create collection
# 3. insert data
# 4. create index
# 5. search, query, and hybrid search on entities
# 6. delete entities by PK
# 7. drop collection
import time
import numpy as np
from pymilvus import (
connections,
utility,
FieldSchema, CollectionSchema, DataType,
Collection,
)
fmt = "\n=== {:30} ===\n"
search_latency_fmt = "search latency = {:.4f}s"
num_entities, dim = 3000, 8
#################################################################################
# 1. connect to Milvus
# Add a new connection alias `default` for Milvus server in `localhost:19530`
# Actually the "default" alias is a buildin in PyMilvus.
# If the address of Milvus is the same as `localhost:19530`, you can omit all
# parameters and call the method as: `connections.connect()`.
#
# Note: the `using` parameter of the following methods is default to "default".
print(fmt.format("start connecting to Milvus"))
connections.connect("default", host="localhost", port="19530")
has = utility.has_collection("hello_milvus")
print(f"Does collection hello_milvus exist in Milvus: {has}")
#################################################################################
# 2. create collection
# We're going to create a collection with 3 fields.
# +-+------------+------------+------------------+------------------------------+
# | | field name | field type | other attributes | field description |
# +-+------------+------------+------------------+------------------------------+
# |1| "pk" | VarChar | is_primary=True | "primary field" |
# | | | | auto_id=False | |
# +-+------------+------------+------------------+------------------------------+
# |2| "random" | Double | | "a double field" |
# +-+------------+------------+------------------+------------------------------+
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" |
# +-+------------+------------+------------------+------------------------------+
fields = [
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
FieldSchema(name="random", dtype=DataType.DOUBLE),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs")
print(fmt.format("Create collection `hello_milvus`"))
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong")
################################################################################
# 3. insert data
# We are going to insert 3000 rows of data into `hello_milvus`
# Data to be inserted must be organized in fields.
#
# The insert() method returns:
# - either automatically generated primary keys by Milvus if auto_id=True in the schema;
# - or the existing primary key field from the entities if auto_id=False in the schema.
print(fmt.format("Start inserting entities"))
rng = np.random.default_rng(seed=19530)
entities = [
# provide the pk field because `auto_id` is set to False
[str(i) for i in range(num_entities)],
rng.random(num_entities).tolist(), # field random, only supports list
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list
]
insert_result = hello_milvus.insert(entities)
hello_milvus.flush()
print(f"Number of entities in Milvus: {hello_milvus.num_entities}") # check the num_entities
################################################################################
# 4. create index
# We are going to create an IVF_FLAT index for hello_milvus collection.
# create_index() can only be applied to `FloatVector` and `BinaryVector` fields.
print(fmt.format("Start Creating index IVF_FLAT"))
index = {
"index_type": "IVF_FLAT",
"metric_type": "L2",
"params": {"nlist": 128},
}
hello_milvus.create_index("embeddings", index)
################################################################################
# 5. search, query, and hybrid search
# After data were inserted into Milvus and indexed, you can perform:
# - search based on vector similarity
# - query based on scalar filtering(boolean, int, etc.)
# - hybrid search based on vector similarity and scalar filtering.
#
# Before conducting a search or a query, you need to load the data in `hello_milvus` into memory.
print(fmt.format("Start loading"))
hello_milvus.load()
# -----------------------------------------------------------------------------
# search based on vector similarity
print(fmt.format("Start searching based on vector similarity"))
vectors_to_search = entities[-1][-2:]
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10},
}
start_time = time.time()
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"])
end_time = time.time()
for hits in result:
for hit in hits:
print(f"hit: {hit}, random field: {hit.entity.get('random')}")
print(search_latency_fmt.format(end_time - start_time))
# -----------------------------------------------------------------------------
# query based on scalar filtering(boolean, int, etc.)
print(fmt.format("Start querying with `random > 0.5`"))
start_time = time.time()
result = hello_milvus.query(expr="random > 0.5", output_fields=["random", "embeddings"])
end_time = time.time()
print(f"query result:\n-{result[0]}")
print(search_latency_fmt.format(end_time - start_time))
# -----------------------------------------------------------------------------
# pagination
r1 = hello_milvus.query(expr="random > 0.5", limit=4, output_fields=["random"])
r2 = hello_milvus.query(expr="random > 0.5", offset=1, limit=3, output_fields=["random"])
print(f"query pagination(limit=4):\n\t{r1}")
print(f"query pagination(offset=1, limit=3):\n\t{r2}")
# -----------------------------------------------------------------------------
# hybrid search
print(fmt.format("Start hybrid searching with `random > 0.5`"))
start_time = time.time()
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > 0.5",
output_fields=["random"])
end_time = time.time()
for hits in result:
for hit in hits:
print(f"hit: {hit}, random field: {hit.entity.get('random')}")
print(search_latency_fmt.format(end_time - start_time))
###############################################################################
# 6. delete entities by PK
# You can delete entities by their PK values using boolean expressions.
ids = insert_result.primary_keys
expr = f'pk in ["{ids[0]}" , "{ids[1]}"]'
print(fmt.format(f"Start deleting with expr `{expr}`"))
result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"])
print(f"query before delete by expr=`{expr}` -> result: \n-{result[0]}\n-{result[1]}\n")
hello_milvus.delete(expr)
result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"])
print(f"query after delete by expr=`{expr}` -> result: {result}\n")
###############################################################################
# 7. drop collection
# Finally, drop the hello_milvus collection
print(fmt.format("Drop collection `hello_milvus`"))
utility.drop_collection("hello_milvus")
升級(jí)版
現(xiàn)在,讓我們來看一下使用LangChain版本的代碼。由于我們使用的是封裝好的Milvus,所以我們需要一個(gè)嵌入模型。在這里,我們選擇了HuggingFaceEmbeddings中的sensenova/piccolo-base-zh
模型作為示例,當(dāng)然你也可以選擇其他模型,這里沒有限制。只要能將其作為一個(gè)變量傳遞給LangChain定義的函數(shù)調(diào)用即可。
下面是一個(gè)簡單的示例,包括數(shù)據(jù)庫連接、插入數(shù)據(jù)、查詢以及得分情況的定義:
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Milvus
model_name = "sensenova/piccolo-base-zh"
embeddings = HuggingFaceEmbeddings(model_name=model_name)
print("鏈接數(shù)據(jù)庫")
vector_db = Milvus(
embeddings,
connection_args={"host": "localhost", "port": "19530"},
collection_name="hello_milvus",
)
print("簡單傳入幾個(gè)值")
vector_db.add_texts(["12345678","789","努力的小雨是一個(gè)知名博主,其名下有公眾號(hào)【靈墨AI探索室】,博客:稀土掘金、博客園、51CTO及騰訊云等","你好啊","我不好"])
print("查詢前3個(gè)最相似的結(jié)果")
docs = vector_db.similarity_search_with_score("你好啊",3)
print("查看其得分情況,分值越低越接近")
for text in docs:
print('文本:%s,得分:%s'%(text[0].page_content,text[1]))
注意,以上代碼只是一個(gè)簡單示例,具體的實(shí)現(xiàn)可能會(huì)根據(jù)你的具體需求進(jìn)行調(diào)整和優(yōu)化。
在langchain版本的代碼中,如果你想要執(zhí)行除了自己需要開啟docker中的milvus容器之外的操作,還需要確保你擁有網(wǎng)絡(luò)代理。這里不多贅述,因?yàn)镠uggingFace社區(qū)并不在國內(nèi)。
個(gè)人定制版
接下來,我們將詳細(xì)了解如何調(diào)用openai模型來回答問題!
from dotenv import load_dotenv
from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate;
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.chat_models.openai import ChatOpenAI
from langchain.schema import BaseOutputParser
# 加載env環(huán)境變量里的key值
load_dotenv()
# 格式化輸出
class CommaSeparatedListOutputParser(BaseOutputParser):
"""Parse the output of an LLM call to a comma-separated list."""
def parse(self, text: str):
"""Parse the output of an LLM call."""
return text.strip().split(", ")
# 先從數(shù)據(jù)庫查詢問題解
docs = vector_db.similarity_search("努力的小雨是誰?")
doc = docs[0].page_content
chat = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0)
template = "請根據(jù)我提供的資料回答問題,資料: {input_docs}"
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
# chat_prompt.format_messages(input_docs=doc, text="努力的小雨是誰?")
chain = LLMChain(
llm=chat,
prompt=chat_prompt,
output_parser=CommaSeparatedListOutputParser()
)
chain.run(input_docs=doc, text="努力的小雨是誰?")
當(dāng)你成功運(yùn)行完代碼后,你將會(huì)得到你所期望的答案。如下圖所示,這些答案將會(huì)展示在你的屏幕上。不然,如果系統(tǒng)不知道這些問題的答案,那它又如何能夠給出正確的回答呢?
文章來源:http://www.zghlxwxcb.cn/news/detail-746340.html
總結(jié)
通過本系列文章的學(xué)習(xí),我們已經(jīng)對(duì)個(gè)人或企業(yè)知識(shí)庫有了一定的了解。盡管OpenAI已經(jīng)提供了私有知識(shí)庫的部署選項(xiàng),但是其高昂的成本對(duì)于一些企業(yè)來說可能是難以承受的。無論將來國內(nèi)企業(yè)是否會(huì)提供個(gè)人或企業(yè)知識(shí)庫的解決方案,我們都需要對(duì)其原理有一些了解。無論我們的預(yù)算多少,都可以找到適合自己的玩法,因?yàn)椴煌A(yù)算的玩法也會(huì)有所不同。文章來源地址http://www.zghlxwxcb.cn/news/detail-746340.html
到了這里,關(guān)于????探索人工智能的世界:構(gòu)建智能問答系統(tǒng)之實(shí)戰(zhàn)篇的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!