定理 1 設(shè) λ 1 , λ 2 , ? ? , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1?,λ2?,?,λm? 是方陣 A \boldsymbol{A} A 的 m m m 個(gè)特征值, p 1 , p 2 , ? ? , p m \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_m p1?,p2?,?,pm? 依次是與之對(duì)應(yīng)的特征向量,如果 λ 1 , λ 2 , ? ? , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1?,λ2?,?,λm? 各不相等,則 p 1 , p 2 , ? ? , p m \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_m p1?,p2?,?,pm? 線性無(wú)關(guān)。
證明 使用數(shù)據(jù)歸納法。
當(dāng) m = 1 m=1 m=1 時(shí),因特征向量 p 1 ≠ 0 \boldsymbol{p}_1 \ne 0 p1?=0,故只含一個(gè)向量的向量組 p 1 \boldsymbol{p}_1 p1? 線性無(wú)關(guān)。文章來源:http://www.zghlxwxcb.cn/news/detail-722637.html
假設(shè)當(dāng) m = k ? 1 m = k - 1 m=k?1 時(shí)結(jié)論成立,要證當(dāng) m = k m=k m=k 時(shí)結(jié)論也成立。即假設(shè)向量組 p 1 , p 2 , ? ? , p k ? 1 \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_{k-1} p1?,p2?,?,pk?1? 線性無(wú)關(guān),要證向量組 p 1 , p 2 , ? ? , p k \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_k p1?,p2?,?,pk? 線性無(wú)關(guān)。為此,設(shè)有
x 1 p 1 + x 2 p 2 + ? + x k ? 1 p k ? 1 + x k p k = 0 (1) x_1 \boldsymbol{p}_1 + x_2 \boldsymbol{p}_2 + \cdots + x_{k-1} \boldsymbol{p}_{k-1} + x_k \boldsymbol{p}_k = \boldsymbol{0} \tag{1} x1?p1?+x2?p2?+?+xk?1?pk?1?+xk?pk?=0(1)
用 A \boldsymbol{A} A 左乘上式,得
x 1 A p 1 + x 2 A p 2 + ? + x k ? 1 A p k ? 1 + x k A p k = 0 (2) x_1 \boldsymbol{A} \boldsymbol{p}_1 + x_2 \boldsymbol{A} \boldsymbol{p}_2 + \cdots + x_{k-1} \boldsymbol{A} \boldsymbol{p}_{k-1} + x_k \boldsymbol{A} \boldsymbol{p}_k = \boldsymbol{0} \tag{2} x1?Ap1?+x2?Ap2?+?+xk?1?Apk?1?+xk?Apk?=0(2)
即
x 1 λ 1 p 1 + x 2 λ 2 p 2 + ? + x k ? 1 λ k ? 1 p k ? 1 + x k λ k p k = 0 (3) x_1 \lambda_1 \boldsymbol{p}_1 + x_2 \lambda_2 \boldsymbol{p}_2 + \cdots + x_{k-1} \lambda_{k-1} \boldsymbol{p}_{k-1} + x_k \lambda_k \boldsymbol{p}_k = \boldsymbol{0} \tag{3} x1?λ1?p1?+x2?λ2?p2?+?+xk?1?λk?1?pk?1?+xk?λk?pk?=0(3)
將 ( 3 ) (3) (3) 式減去 ( 1 ) (1) (1) 式的 λ k \lambda_k λk? 倍,得
x 1 ( λ 1 ? λ k ) p 1 + x 2 ( λ 2 ? λ k ) p 2 + ? + x k ? 1 ( λ k ? 1 ? λ k ) p k ? 1 = 0 (4) x_1 (\lambda_1 - \lambda_k) \boldsymbol{p}_1 + x_2 (\lambda_2 - \lambda_k) \boldsymbol{p}_2 + \cdots + x_{k-1} (\lambda_{k-1} - \lambda_k) \boldsymbol{p}_{k-1} = \boldsymbol{0} \tag{4} x1?(λ1??λk?)p1?+x2?(λ2??λk?)p2?+?+xk?1?(λk?1??λk?)pk?1?=0(4)
因?yàn)楦鶕?jù)假設(shè)有向量組 p 1 , p 2 , ? ? , p k ? 1 \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_{k-1} p1?,p2?,?,pk?1? 線性無(wú)關(guān),所以有
x i ( λ i ? λ k ) = 0 ( i = 1 , 2 , ? ? , k ? 1 ) x_i (\lambda_i - \lambda_k) = 0 \hspace{1em} (i = 1,2,\cdots,k-1) xi?(λi??λk?)=0(i=1,2,?,k?1)
因?yàn)? λ 1 , λ 2 , ? ? , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1?,λ2?,?,λm? 各不相等,即 λ i ? λ k ≠ 0 ? ( i = 1 , 2 , ? ? , k ? 1 ) \lambda_i - \lambda_k \ne 0 \ (i=1,2,\cdots,k-1) λi??λk?=0?(i=1,2,?,k?1),所以得
x i = 0 ( i = 1 , 2 , ? ? , k ? 1 ) (5) x_i = 0 \hspace{1em} (i=1,2,\cdots,k-1) \tag{5} xi?=0(i=1,2,?,k?1)(5)
將 ( 5 ) (5) (5) 式代入式 ( 1 ) (1) (1),得
x k p k = 0 x_k \boldsymbol{p}_k = \boldsymbol{0} xk?pk?=0
因?yàn)? p k \boldsymbol{p}_k pk? 為特征向量,即 p k ≠ 0 \boldsymbol{p}_k \ne \boldsymbol{0} pk?=0,所以 x k = 0 x_k = 0 xk?=0。因此有 p 1 , p 2 , ? ? , p m \boldsymbol{p}_1,\boldsymbol{p}_2,\cdots,\boldsymbol{p}_m p1?,p2?,?,pm? 線性無(wú)關(guān)。得證。文章來源地址http://www.zghlxwxcb.cn/news/detail-722637.html
到了這里,關(guān)于線性代數(shù)|證明:矩陣不同特征值對(duì)應(yīng)的特征向量線性無(wú)關(guān)的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!