国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

STM32讀取24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片ADS1231數(shù)據(jù)

這篇具有很好參考價(jià)值的文章主要介紹了STM32讀取24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片ADS1231數(shù)據(jù)。希望對大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問。

STM32讀取24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片ADS1231數(shù)據(jù)

ADS1231是一款TI公司出品的24位ADC芯片,常用于與稱重傳感器配合實(shí)現(xiàn)體重計(jì)的應(yīng)用。這里介紹STM32讀取ADS1231的電路和代碼實(shí)現(xiàn)。ADS1231的特點(diǎn)為通過硬件管腳可控制兩種采樣速率(10SPS和80SPS),及可以控制芯片上下電以實(shí)現(xiàn)低功耗過程控制。

ADS1231的內(nèi)部原理如下圖所示(固定128倍輸入信號放大增益):
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位

STM32電路連接

ADS1231與STM32的連接關(guān)系設(shè)計(jì)如下圖所示:
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
ADS1231的采樣模擬接口可以工作在和數(shù)字接口不同的電壓,如模擬供電 AVDD采用 5V,數(shù)字供電采用3.3V,從而與STM32的接口直接連接即可。

ADS1231測試電路

ADS1231典型的應(yīng)用連接到惠斯通電橋,接收差分電壓,由于內(nèi)部已固定為128倍信號放大,所以對于5V供電(AVDD),最大檢測差分電壓范圍為±20mV。需要注意輸入差分信號有共模電壓范圍要求:
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
簡單測試可以采用如下方式:
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
當(dāng)可調(diào)電阻器為10歐姆時(shí),IN+和IN-差分電壓為(5/(4700+4700+10))*10 = 5.31mV。而IN-端電壓為2.49734V,IN+端電壓為2.50265V,共模和差模電壓都在手冊電氣范圍內(nèi),可以微調(diào)可調(diào)電位器的阻值,調(diào)整輸出差模電壓。

ADS1231訪問協(xié)議

ADS1231可以通過硬件管腳SPEED控制采樣速率, 及通過/PWRDONW管腳控制芯片上下電:
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
讀取數(shù)據(jù)的時(shí)序則為:

  1. 檢測nRDY管腳(也是Dout管腳)狀態(tài),如為低電平則可以讀取數(shù)據(jù),如為高電平則不能讀取數(shù)據(jù) ;
  2. 當(dāng)數(shù)據(jù)可讀取時(shí), 發(fā)送24個(gè)時(shí)鐘,并在每個(gè)時(shí)鐘的下降沿獲得采樣數(shù)據(jù)的24位中的各個(gè)位,高位優(yōu)先接收到
  3. 24個(gè)時(shí)鐘之后,多發(fā)一個(gè)時(shí)鐘,使得nRDY管腳回到輸出高電平狀態(tài),在下一次數(shù)據(jù)可讀取時(shí),ADS1231會(huì)將信號拉低

STM32工程配置

這里采用STM32G031F8P6和STM32CUBEIDE開發(fā)環(huán)境,實(shí)現(xiàn)ADS1231的ADC數(shù)據(jù)讀取。

首先配置基本工程和時(shí)鐘系統(tǒng):
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
配置UART2作為通訊口。
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
配置與ADS1231連接的4個(gè)管腳:
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
保存并生成初始工程代碼:
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位

STM32工程代碼

代碼主要實(shí)現(xiàn)微秒級的時(shí)序控制,采用的微秒延時(shí)函數(shù)參考: STM32 HAL us delay(微秒延時(shí))的指令延時(shí)實(shí)現(xiàn)方式及優(yōu)化

測試邏輯采用以下方式:

  1. 串口收到0x01命令,進(jìn)行10Hz輸出測試
  2. 串口收到0x02命令,進(jìn)行80Hz輸出測試

main.c文件完整代碼如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define ads1231_rdy (HAL_GPIO_ReadPin(GPIOA,  GPIO_PIN_7)==0)?1:0

#define ads1231_clk_h HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, GPIO_PIN_SET)
#define ads1231_clk_l HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, GPIO_PIN_RESET)
#define ads1231_dout HAL_GPIO_ReadPin(GPIOA,  GPIO_PIN_7)

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;
uint32_t ads1231_data;

uint32_t counter=0;
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  //hardware reset of ADS1231
  HAL_GPIO_WritePin(ADS1231_nPDWN_GPIO_Port, ADS1231_nPDWN_Pin, GPIO_PIN_RESET);
  PY_Delay_us_t(1000000);
  HAL_GPIO_WritePin(ADS1231_nPDWN_GPIO_Port, ADS1231_nPDWN_Pin, GPIO_PIN_SET);

  __HAL_UART_CLEAR_FLAG(&huart2, UART_FLAG_RXNE);
  HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  if(cmd==0x01) //10SPS
	  {
		  HAL_GPIO_WritePin(ADS1231_SPEED_GPIO_Port, ADS1231_SPEED_Pin, GPIO_PIN_RESET);

	      while(ads1231_rdy) PY_Delay_us_t(1);
	      while(!ads1231_rdy) PY_Delay_us_t(1);
	      ads1231_data = 0;
		  PY_Delay_us_t(1);

		  for(uint8_t i=1;i<=24;i++)
		  {
			  ads1231_clk_h;
			  PY_Delay_us_t(1);
			  ads1231_clk_l;
			  ads1231_data |=  (ads1231_dout<<(24-i));
			  PY_Delay_us_t(1);
		  }

		  ads1231_clk_h;
		  PY_Delay_us_t(1);
		  ads1231_clk_l;
		  PY_Delay_us_t(1);

	      HAL_UART_Transmit(&huart2, &ads1231_data, 3, 2700);

	      counter++;
	      if(counter%10==0) PY_Delay_us_t(1000000);
	  }

	  if(cmd==0x02) //80SPS
	  {
		  HAL_GPIO_WritePin(ADS1231_SPEED_GPIO_Port, ADS1231_SPEED_Pin, GPIO_PIN_SET);

	      while(ads1231_rdy) PY_Delay_us_t(1);
	      while(!ads1231_rdy) PY_Delay_us_t(1);
	      ads1231_data = 0;
		  PY_Delay_us_t(1);

		  for(uint8_t i=1;i<=24;i++)
		  {
			  ads1231_clk_h;
			  PY_Delay_us_t(1);
			  ads1231_clk_l;
			  ads1231_data |=  (ads1231_dout<<(24-i));
			  PY_Delay_us_t(1);
		  }

		  ads1231_clk_h;
		  PY_Delay_us_t(1);
		  ads1231_clk_l;
		  PY_Delay_us_t(1);

		  HAL_UART_Transmit(&huart2, &ads1231_data, 3, 2700);

	      counter++;
	      if(counter%80==0) PY_Delay_us_t(1000000);
	  }


    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 8;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, ADS1231_SPEED_Pin|ADS1231_SCK_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(ADS1231_nPDWN_GPIO_Port, ADS1231_nPDWN_Pin, GPIO_PIN_SET);

  /*Configure GPIO pins : ADS1231_SPEED_Pin ADS1231_nPDWN_Pin */
  GPIO_InitStruct.Pin = ADS1231_SPEED_Pin|ADS1231_nPDWN_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /*Configure GPIO pin : ADS1231_SCK_Pin */
  GPIO_InitStruct.Pin = ADS1231_SCK_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(ADS1231_SCK_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : ADS1231_nDRDY_DOUT_Pin */
  GPIO_InitStruct.Pin = ADS1231_nDRDY_DOUT_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(ADS1231_nDRDY_DOUT_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
	HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

代碼實(shí)現(xiàn)十六進(jìn)制數(shù)據(jù)輸出,如果要切換為串口printf打印輸出,可以參考:
STM32 UART串口printf函數(shù)應(yīng)用及浮點(diǎn)打印代碼空間節(jié)省 (HAL)

輸出的24位數(shù)據(jù)為補(bǔ)碼格式,進(jìn)行絕對值提取時(shí)按照如下規(guī)則:
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位

測試效果

串口命令0x01輸出(間隔1秒輸出10個(gè)采樣值):
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位
串口命令0x02輸出(間隔1秒輸出80個(gè)采樣值):
24位adc,STM32,stm32,ADC,24-BIT,ADS1231,24位

例程下載

STM32G031F8P6-ADS1231例程

–End–文章來源地址http://www.zghlxwxcb.cn/news/detail-700942.html

到了這里,關(guān)于STM32讀取24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片ADS1231數(shù)據(jù)的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • STM32配置讀取雙路24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片CS1238數(shù)據(jù)

    STM32配置讀取雙路24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片CS1238數(shù)據(jù)

    CS1238是一款國產(chǎn)雙路24位ADC芯片,與CS1238對應(yīng)的單路24位ADC芯片是CS1237,功能上相當(dāng)于HX711和TM7711的組合。其功能如下所示: 市面上的模塊: CS1238內(nèi)部原理如下所示, VDD是DVDD和AVDD的合并: 有單獨(dú)的參考電壓輸入設(shè)置管腳,以及內(nèi)部輸出與VDD同電壓的參考輸出電壓,可選連接到

    2024年02月16日
    瀏覽(25)
  • STM32模擬SPI協(xié)議獲取24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片AD7791電壓采樣數(shù)據(jù)

    STM32模擬SPI協(xié)議獲取24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片AD7791電壓采樣數(shù)據(jù)

    STM32大部分芯片只有12位的ADC采樣性能,如果要實(shí)現(xiàn)更高精度的模數(shù)轉(zhuǎn)換如24位ADC采樣,則需要連接外部ADC實(shí)現(xiàn)。AD7791是亞德諾(ADI)半導(dǎo)體一款用于低功耗、24位Σ-Δ型模數(shù)轉(zhuǎn)換器(ADC) ,適合低頻測量應(yīng)用,提供50 Hz/60 Hz同步抑制。 這里介紹基于AD7791的24位ADC采樣實(shí)現(xiàn)。 AD7791的管腳

    2024年02月09日
    瀏覽(41)
  • STM32--ADC模數(shù)轉(zhuǎn)換

    STM32--ADC模數(shù)轉(zhuǎn)換

    STM32的ADC(Analog-Digital Converter)模擬-數(shù)字轉(zhuǎn)換器 , 是一種逐次逼近型模擬數(shù)字轉(zhuǎn)換器,可以將引腳上連續(xù)變化的模擬電壓轉(zhuǎn)換為內(nèi)存中存儲的數(shù)字變量,建立模擬電路到數(shù)字電路的橋梁 。擁有18個(gè)輸入通道,可測量16個(gè)外部通道和2個(gè)內(nèi)部信號源。各通道的A/D轉(zhuǎn)換可以單次、

    2024年02月12日
    瀏覽(18)
  • STM32-ADC模數(shù)轉(zhuǎn)換

    STM32-ADC模數(shù)轉(zhuǎn)換

    ?ADC的概念 Analog-to-Digital Converter的縮寫。指模/數(shù)轉(zhuǎn)換器或者模擬/數(shù)字轉(zhuǎn)換器。是指將連續(xù)變量的模擬信號轉(zhuǎn)換為離散的數(shù)字信號的器件。 ?ADC的作用 采集傳感器的數(shù)據(jù),測量輸入電壓,檢查電池電量剩余,監(jiān)測溫濕度等。 典型的模擬數(shù)字轉(zhuǎn)換器將模擬信號轉(zhuǎn)換為表示一定

    2024年01月20日
    瀏覽(20)
  • STM-32:ADC模數(shù)轉(zhuǎn)換器—ADC單通道轉(zhuǎn)換/ADC多通道轉(zhuǎn)換

    STM-32:ADC模數(shù)轉(zhuǎn)換器—ADC單通道轉(zhuǎn)換/ADC多通道轉(zhuǎn)換

    ADC(Analog-Digital Converter),意即模擬-數(shù)字轉(zhuǎn)換器,簡稱模數(shù)轉(zhuǎn)換器。ADC可以將引腳上連續(xù)變化的模擬電壓轉(zhuǎn)換為內(nèi)存中存儲的數(shù)字變量,建立模擬電路到數(shù)字電路的橋梁。與ADC相對應(yīng),從數(shù)字電路到模擬電路的橋梁即DAC(Digital-Analog Convertor),數(shù)模轉(zhuǎn)換器。 DAC不是唯一可以

    2024年02月09日
    瀏覽(23)
  • STM32筆記(1)———ADC模數(shù)轉(zhuǎn)換器原理及單、雙通道轉(zhuǎn)換

    STM32筆記(1)———ADC模數(shù)轉(zhuǎn)換器原理及單、雙通道轉(zhuǎn)換

    ADC(Analog-Digital Converter),意即模擬-數(shù)字轉(zhuǎn)換器,簡稱模數(shù)轉(zhuǎn)換器。 ADC可以將引腳上連續(xù)變化的模擬電壓轉(zhuǎn)換為內(nèi)存中存儲的數(shù)字變量,建立模擬電路到數(shù)字電路的橋梁。 DAC:數(shù)字到模擬的橋梁(PWM控制燈的亮度和電機(jī)旋轉(zhuǎn)的速度,DAC的使用只要是在信號發(fā)生器、音頻解碼

    2024年02月04日
    瀏覽(23)
  • 【第五章】STM32-ADC模數(shù)轉(zhuǎn)換(2.AD多通道+DMA轉(zhuǎn)運(yùn)實(shí)驗(yàn))

    【第五章】STM32-ADC模數(shù)轉(zhuǎn)換(2.AD多通道+DMA轉(zhuǎn)運(yùn)實(shí)驗(yàn))

    我們在上一節(jié)已經(jīng)了解了ADC以及AD單通道采集的過程,那么既然有AD單通道,那么必然有AD多通道,上一節(jié)也已經(jīng)鋪墊了一下: 【問】如果一個(gè)規(guī)則組同時(shí)用多個(gè)通道采集數(shù)據(jù),那么數(shù)據(jù)如何讀取? ???????????????????????????????????????? ??? --DMA-- ???

    2024年04月26日
    瀏覽(47)
  • 硬件知識-ADC模數(shù)轉(zhuǎn)換芯片

    硬件知識-ADC模數(shù)轉(zhuǎn)換芯片

    精度”是用來描述物理量的準(zhǔn)確程度的,而“分辨率”是用來描述刻度劃分的。 分辨率與AD芯片的位數(shù)有關(guān),而精度需要查看手冊看參數(shù)。 對于ADC*:確定輸入大?。?Vin=Outputcode LSB ; 如果ADC的輸出代碼為二進(jìn)制或二進(jìn)制補(bǔ)碼格式也沒有關(guān)系,只要將二進(jìn)制數(shù)正確轉(zhuǎn)換為其等效

    2024年02月09日
    瀏覽(21)
  • ADS8866 ADC轉(zhuǎn)換芯片驅(qū)動(dòng)調(diào)試

    ADS8866 ADC轉(zhuǎn)換芯片驅(qū)動(dòng)調(diào)試

    目錄 ADS8866 ADC轉(zhuǎn)換芯片驅(qū)動(dòng)調(diào)試 開發(fā)環(huán)境: ADS8866功能簡介 硬件連接 SPI3的軟件驅(qū)動(dòng) ADS8866通訊時(shí)序分析 ADS8866驅(qū)動(dòng) 開發(fā)環(huán)境: ADS8866功能簡介 https://download.csdn.net/download/qq_45143522/89216266 硬件連接 SPI3的軟件驅(qū)動(dòng) ADS8866通訊時(shí)序分析 ADS8866驅(qū)動(dòng)

    2024年04月25日
    瀏覽(22)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包