STM32配置讀取雙路24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片CS1238數(shù)據(jù)
CS1238是一款國產(chǎn)雙路24位ADC芯片,與CS1238對應(yīng)的單路24位ADC芯片是CS1237,功能上相當(dāng)于HX711和TM7711的組合。其功能如下所示:
市面上的模塊:
STM32電路連接
CS1238內(nèi)部原理如下所示, VDD是DVDD和AVDD的合并:
有單獨(dú)的參考電壓輸入設(shè)置管腳,以及內(nèi)部輸出與VDD同電壓的參考輸出電壓,可選連接到參考輸入電壓管腳:
所以如果REFIN要設(shè)置為5V, 則VDD也要設(shè)置為5V,因?yàn)镃S1238的DOUT管腳是輸入輸出雙向管腳,所以要增加電路才能實(shí)現(xiàn)和3.3V STM32芯片的連接訪問。這里先介紹VDD和REFIN都是3.3V的場景,所以可以和STM32芯片直接連接。
CS1238測試電路
CS1238典型的應(yīng)用連接到惠斯通電橋,接收差分電壓。簡單測試可以采用如下方式:
當(dāng)可調(diào)電阻器為10歐姆時,IN+和IN-差分電壓為(3.3/(4700+4700+10))*10 = 3.507mV??梢晕⒄{(diào)可調(diào)電位器的阻值,調(diào)整輸出差模電壓。
如果CS1238差分輸入是單端信號,在差分輸入兩端連接一個大電阻如1M歐姆。如果CS1238差分輸入是差分信號,則根據(jù)阻抗要求跨接一個匹配電阻如100歐姆。
CS1238訪問協(xié)議
CS1238通過控制時鐘管腳輸出低電平指示正常工作狀態(tài),然后識別數(shù)據(jù)輸入管腳DOUT/nRDY的低電平狀態(tài)判斷當(dāng)前已完成轉(zhuǎn)換并可讀取數(shù)據(jù),然后發(fā)送出24個時鐘波形,并在每個時鐘波形的下降沿讀取數(shù)據(jù)位,先讀到的是24位采樣數(shù)據(jù)的高位。在24個時鐘后,還可以發(fā)送3個時鐘波形,即第25~27的時鐘,在第25個時鐘讀到的電平反應(yīng)配置寄存器更新狀態(tài)。第26個時鐘讀到的電平始終為0無意義表達(dá)。
DOUT/nRDY是三目的管腳,除了作為轉(zhuǎn)換完成的狀態(tài)指示,作為輸出,也作為輸入。而且MCU對CS1238輸出時,因?yàn)镃S1238輸入內(nèi)阻比較小,不能通過外部上拉提供電壓輸入,所以MCU要采用推挽方式(Push-pull)輸出高電平給CS1238。而MCU接收數(shù)據(jù)時,要配置在輸入模式或者輸出開漏(Open-drain)邏輯高輸出模式,都可以讀取到管腳狀態(tài),因?yàn)閺妮敵鯫D到輸出PP內(nèi)部電路切換更平滑,所以這里STM32采用輸出OD作為讀模式,輸出PP作為寫模式的配置。
CS1238在控制寄存器的寫入和讀取方面的時序描述如下:
STM32工程配置
這里采用STM32F103C6T6和STM32CUBEIDE開發(fā)環(huán)境,實(shí)現(xiàn)CS1238的ADC數(shù)據(jù)讀取代碼。
首先配置基本工程和時鐘系統(tǒng):
STM32F103支持USB,可以實(shí)現(xiàn)虛擬串口,所以進(jìn)行USB的配置,采用默認(rèn)設(shè)置接口,另外配置UART2作為可選通訊口。
然后配置UART2:
選擇具有FT特征的PB0和PB1作為與CS1238通訊的管腳,PB0作為時鐘管腳配置為Push-pull,PB1作先配置為Open-drain,然后再程序代碼里進(jìn)行切換Push-pull。
保存并生成初始代碼:
STM32工程代碼
代碼主要實(shí)現(xiàn)微秒級的時序控制,采用的微秒延時函數(shù)參考: STM32 HAL us delay(微秒延時)的指令延時實(shí)現(xiàn)方式及優(yōu)化
STM32虛擬串口的設(shè)置可以參考: STM32 USB VCOM和HID的區(qū)別,配置及Echo功能實(shí)現(xiàn)(HAL)
編譯時需要采用節(jié)省存儲的編譯方式,參考: STM32 region `FLASH‘ overflowed by xxx bytes 問題解決
代碼在USB的控制文件里,將USB接收到的字節(jié)賦值給全局變量cmd,用來控制邏輯執(zhí)行:
- 在收到0x01時,按照發(fā)送24個時鐘的模式讀取CS1238 24bit數(shù)據(jù)
- 在收到0x02時,按照發(fā)送27個時鐘的模式讀取CS1238 24bit數(shù)據(jù)和配置寄存器更新狀態(tài)信息
- 在收到0x03時,讀取CS1238配置寄存器字節(jié)數(shù)據(jù)
- 在收到字節(jié)最高位為1的cmd時,識別為要寫入CS1238配置寄存器操作,將cmd的最高位1改為0,然后發(fā)送到CS1238配置寄存器
main.c文件完整代碼如下:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
//Written by Pegasus Yu in 2022
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
__IO uint32_t firstms, secondms;
__IO uint32_t counter = 0;
firstms = HAL_GetTick()+1;
secondms = firstms+1;
while(uwTick!=firstms) ;
while(uwTick!=secondms) counter++;
usDelayBase = ((float)counter)/1000;
}
void PY_Delay_us_t(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
void PY_usDelayOptimize(void)
{
__IO uint32_t firstms, secondms;
__IO float coe = 1.0;
firstms = HAL_GetTick();
PY_Delay_us_t(1000000) ;
secondms = HAL_GetTick();
coe = ((float)1000)/(secondms-firstms);
usDelayBase = coe*usDelayBase;
}
void PY_Delay_us(uint32_t Delay)
{
__IO uint32_t delayReg;
__IO uint32_t msNum = Delay/1000;
__IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);
if(msNum>0) HAL_Delay(msNum);
delayReg = 0;
while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
void Dout_OD_Mode(void);
void Dout_PP_Mode(void);
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
#define cs1238_rdy (HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1)==0)?1:0
#define cs1238_clk_h HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET)
#define cs1238_clk_l HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET)
#define cs1238_dout HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1)
#define write_to_cs1238_dout_h HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET)
#define write_to_cs1238_dout_l HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET)
#define WReg_CMD 0x65
#define RReg_CMD 0x56
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;
uint32_t cs1238_data;
uint32_t cs1238_data_max = 0;
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint8_t config_reg_update_status = 0;
uint8_t config_reg = 0x0c; //config reg default value after power-up is 0x0c for CS1238
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
MX_USB_DEVICE_Init();
/* USER CODE BEGIN 2 */
PY_usDelayTest();
PY_usDelayOptimize();
cs1238_clk_h;
PY_Delay_us_t(120); //soft reset cs1238
cs1238_clk_l;
PY_Delay_us_t(10);
__HAL_UART_CLEAR_FLAG(&huart2, UART_FLAG_RXNE);
HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if(cmd==0x01) //read value w/o update info
{
while(cs1238_rdy) ;
while(!cs1238_rdy) ;
cs1238_data = 0;
PY_Delay_us_t(1);
for(uint8_t i=1;i<=24;i++)
{
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
cs1238_data |= (((uint32_t)cs1238_dout)<<(24-i));
PY_Delay_us_t(1);
}
while( CDC_Transmit_FS(&cs1238_data, 3) != USBD_OK ) PY_Delay_us_t(1);
}
else if(cmd==0x02) //read value w/ update info
{
/*
* Dout value from CLK 25 indicates Config register was written new value already
* Dout value from CLK 26 gets 0 always without meaning
*/
while(cs1238_rdy) ;
while(!cs1238_rdy);
cs1238_data = 0;
PY_Delay_us_t(1);
/*clk 1~24*/
for(uint8_t i=1;i<=24;i++)
{
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
cs1238_data |= (((uint32_t)cs1238_dout)<<(24-i));
PY_Delay_us_t(1);
}
/*clk 25*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
config_reg_update_status = cs1238_dout;
PY_Delay_us_t(1);
/*clk 26*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 27*/
cs1238_clk_h;
Dout_PP_Mode();
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
Dout_OD_Mode();
while( CDC_Transmit_FS(&cs1238_data, 3) != USBD_OK ) PY_Delay_us_t(1);
while( CDC_Transmit_FS(&config_reg_update_status, 1) != USBD_OK ) PY_Delay_us_t(1);
}
else if(cmd==0x03) //Read config register
{
cmd = 0x00;
while(cs1238_rdy) ;
while(!cs1238_rdy);
cs1238_data = 0;
PY_Delay_us_t(1);
/*clk 1~24*/
for(uint8_t i=1;i<=24;i++)
{
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
}
/*clk 25*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 26*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 27*/
cs1238_clk_h;
Dout_PP_Mode();
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 28*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 29*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 30~36*/
for(uint8_t i=1;i<8;i++)
{
cs1238_clk_h;
if(((RReg_CMD<<i)&0x80)) write_to_cs1238_dout_h;
else write_to_cs1238_dout_l;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
}
/*clk 37*/
Dout_OD_Mode();
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 38~45*/
config_reg = 0;
for(uint8_t i=0;i<8;i++)
{
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
config_reg |= (cs1238_dout<<(7-i));
PY_Delay_us_t(1);
}
/*clk 46*/
Dout_PP_Mode();
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
Dout_OD_Mode();
while( CDC_Transmit_FS(&config_reg, 1) != USBD_OK ) PY_Delay_us_t(1);
}
else if(cmd&0x80) //Set config register
{
config_reg = cmd&0x7F; //Config register value to be sent
while(cs1238_rdy) ;
while(!cs1238_rdy);
cs1238_data = 0;
PY_Delay_us_t(1);
/*clk 1~24*/
for(uint8_t i=1;i<=24;i++)
{
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
}
/*clk 25*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 26*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 27*/
cs1238_clk_h;
Dout_PP_Mode();
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 28*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 29*/
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 30~36*/
for(uint8_t i=1;i<8;i++)
{
cs1238_clk_h;
if(((WReg_CMD<<i)&0x80)) write_to_cs1238_dout_h;
else write_to_cs1238_dout_l;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
}
/*clk 37*/
Dout_PP_Mode();
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
/*clk 38~45*/
for(uint8_t i=0;i<8;i++)
{
cs1238_clk_h;
if(((config_reg<<i)&0x80)) write_to_cs1238_dout_h;
else write_to_cs1238_dout_l;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
}
/*clk 46*/
Dout_PP_Mode();
cs1238_clk_h;
PY_Delay_us_t(1);
cs1238_clk_l;
PY_Delay_us_t(1);
Dout_OD_Mode();
while( CDC_Transmit_FS(&config_reg, 1) != USBD_OK ) PY_Delay_us_t(1);
cmd = 0;
}
else;
PY_Delay_us_t(500000);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USB;
PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_PLL_DIV1_5;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET);
/*Configure GPIO pin : PB0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PB1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void Dout_OD_Mode(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET);
/*Configure GPIO pin : PB1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void Dout_PP_Mode(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET);
/*Configure GPIO pin : PB1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
HAL_UART_Receive_IT(&huart2, (uint8_t *)&cmd, 1);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
STM32代碼測試
通過串口工具發(fā)送0x01指令(只讀取24位ADC值, 觀察工具左側(cè)接收的24位16進(jìn)制數(shù)據(jù)):
通過串口工具發(fā)送0x02指令(讀取24位ADC值和寄存器更新狀態(tài)信息, 觀察工具左側(cè)接收的32位16進(jìn)制數(shù)據(jù)):
通過串口工具發(fā)送0x03指令(讀配置寄存器數(shù)據(jù)):
通過串口工具發(fā)送0x8d指令(配置寄存器設(shè)置為0x0D, 選擇采樣通道B):
回讀, 發(fā)送0x03指令(讀配置寄存器數(shù)據(jù)):
溫度數(shù)據(jù)可根據(jù)手冊說明進(jìn)行設(shè)置讀取解析。
代碼實(shí)現(xiàn)十進(jìn)制數(shù)據(jù)輸出,如果要切換為串口printf打印輸出,可以參考:
STM32 UART串口printf函數(shù)應(yīng)用及浮點(diǎn)打印代碼空間節(jié)省 (HAL)
CS1238 5V供電與STM32 3.3V供電連接方式
可采用如下方案,實(shí)現(xiàn)CS1238 5V供電與STM32 3.3V供電連接方式。STM32選用FT(5V耐壓)的GPIO,三個GPIO都設(shè)置成Open-drain無上下拉輸出模式。
第一個GPIO連接外部1K上拉到5V,控制輸出時鐘給CS1239。
第二個GPIO通過PNP或者PMOS管電路,GPIO輸出邏輯1時,5V電壓不輸出,GPIO輸出邏輯0時,5V電壓輸出。從而實(shí)現(xiàn)控制向DOUT輸出直驅(qū)高電平。
第三個GPIO始終輸出邏輯1(高阻態(tài)),并用作DOUT狀態(tài)值讀取。
CS1237工程代碼
CS1237是CS1238的單通道版本,在工程代碼上完全一致,只是在對寄存器參數(shù)進(jìn)行配置時沒有通道B可選:
例程下載
STM32F103C6T6讀取雙路24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片CS1238數(shù)據(jù)例程文章來源:http://www.zghlxwxcb.cn/news/detail-598991.html
–End–文章來源地址http://www.zghlxwxcb.cn/news/detail-598991.html
到了這里,關(guān)于STM32配置讀取雙路24位模數(shù)轉(zhuǎn)換(24bit ADC)芯片CS1238數(shù)據(jù)的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!