幾何概率、條件概率及全概率公式作業(yè)
-
有兩箱零件,第一箱裝50件,其中20件是一等品;第二箱裝30件,其中18件是一等品,現(xiàn)從兩箱中隨意挑出一箱,然后從該箱中先后任取兩個零件,試求第一次取出的零件是一等品的概率_____(結果小數(shù)點后保留1位)
【正確答案:0.5 或1/2】
解析:
設A?,A?分別表示“挑出第一箱、第二箱”,B?,B?分別表示“第一次、第二次取出的是一等品”,所求概率為 P ( B 1 ) = P ( A 1 ) P ( B 1 ∣ A 1 ) + P ( A 2 ) P ( B 1 ∣ A 2 ) = 1 2 × 20 50 + 1 2 × 18 30 = 0.5 ; P(B_{1})=P(A_{1})P(B_{1}|A_{1})+P(A_{2})P(B_{1}|A_{2})= \frac {1}{2} \times \frac {20}{50}+ \frac {1}{2} \times \frac {18}{30}=0.5; P(B1?)=P(A1?)P(B1?∣A1?)+P(A2?)P(B1?∣A2?)=21?×5020?+21?×3018?=0.5; -
甲乙兩艘輪船駛向一個不能同時停泊兩艘輪船的碼頭,它們在一晝夜內到達的時間是等可能的,如果甲船的停泊時間是一小時,乙船的停泊時間是兩小時,求它們中任何一艘都不需要等候碼頭空出的概率是______(結果用小數(shù)表示,小數(shù)點后保留5位);
【正確答案:0.87934或1013/1152】
解析:
設甲乙兩艘輪船到達碼頭的時間分別為x和y小時,
有Ω={(x,y)|0≤x≤24,0≤y≤24}, 得 m(Ω)=242=576,
事件A=“它們中任何一艘都不需要等候碼頭空出”,
若甲先到, 有x+1≤y≤24;若乙先到,有y+2≤x≤24;
即A={(x,y)|0≤x≤24,0≤y≤24,x+1≤y≤24或y+2≤x≤24},
得 m ( A ) = 1 2 × 2 3 2 + 1 2 × 2 2 2 = 1013 2 m(A)= \frac {1}{2} \times 23^{2}+ \frac {1}{2} \times 22^{2}= \frac {1013}{2} m(A)=21?×232+21?×222=21013?,
故所求概率為 P ( A ) = m ( A ) m ( Ω ) = 1013 1152 P(A)= \frac {m(A)}{m( \Omega )}= \frac {1013}{1152} P(A)=m(Ω)m(A)?=11521013? -
設一批產品中一、二、三等品各占60%,35%,5%. 從中任意取出一件,結果不是三等品,求取到的是一等品的概率_______(結果用小數(shù)表示,要求小數(shù)點后保留5位)
【正確答案:12/19 或0.63158】
解析:
設A,B,C分別表示“取出一、二、三等品”,有 P ( A ) = 0.6 , P ( B ) = 0.35 , P ( C ) = 0.05 P(A)=0.6,P(B)=0.35, P(C)=0.05 P(A)=0.6,P(B)=0.35,P(C)=0.05,故所求概率為
P ( A ∣ C  ̄ ) = P ( A C  ̄ ) P ( C  ̄ ) = P ( A ) 1 ? P ( C ) = 0.6 1 ? 0.05 = 12 19 P(A| \overline{C})= \frac {P(A \overline{C})}{P(\overline{C})}= \frac {P(A)}{1-P(C)}= \frac {0.6}{1-0.05}= \frac {12}{19} P(A∣C)=P(C)P(AC)?=1?P(C)P(A)?=1?0.050.6?=1912? -
已知 P(A)=1/3, P(B|A)=1/4, P(A|B)=1/6, 求P(A∪B)=_____(結果小數(shù)點后保留2位)
【正確答案: 3/4或0.75】
解析:
因 P ( A B ) = P ( A ) P ( B ∣ A ) = 1 3 × 1 4 = 1 12 , P ( B ) = P ( A B ) P ( A ∣ B ) = 1 / 12 1 / 6 = 1 2 , 故 P ( A ∪ B ) = P ( A ) + P ( B ) ? P ( A B ) = 1 3 + 1 2 ? 1 12 = 3 4 P(AB)=P(A)P(B|A)= \frac {1}{3} \times \frac {1}{4}= \frac {1}{12},P(B)= \frac {P(AB)}{P(A|B)}= \frac {1/12}{1/6}= \frac {1}{2},故P(A \cup B)=P(A)+P(B)-P(AB)= \frac {1}{3}+ \frac {1}{2}- \frac {1}{12}= \frac {3}{4} P(AB)=P(A)P(B∣A)=31?×41?=121?,P(B)=P(A∣B)P(AB)?=1/61/12?=21?,故P(A∪B)=P(A)+P(B)?P(AB)=31?+21??121?=43? -
已知 P ( A ˉ ) = 0.3 , P ( B ) = 0.4 , P ( A B ˉ ) = 0.5 P(\bar{A})=0.3,P(B)=0.4,P(A \bar{B})=0.5 P(Aˉ)=0.3,P(B)=0.4,P(ABˉ)=0.5,求 P ( B ∣ A ∪ B  ̄ ) P(B|A \cup \overline {B}) P(B∣A∪B)
=_____(結果小數(shù)點后保留2位)
【正確答案:0.25 或1/4】
解析:
因 P ( A B ) = P ( A ) ? P ( A B  ̄ ) = 1 ? P ( A  ̄ ) ? P ( A B  ̄ ) = 1 ? 0.3 ? 0.5 = 0.2 , 且 P ( A ∪ B  ̄ ) = P ( A ) + P ( B  ̄ ) ? P ( A B  ̄ ) = 1 ? P ( A  ̄ ) + 1 ? P ( B ) ? P ( A B  ̄ ) = 1 ? 0.3 + 1 ? 0.4 ? 0.5 = 0.8 , 故 P ( B ∣ A ∪ B  ̄ ) = P ( B ( A ∪ B  ̄ ) ) P ( A ∪ B  ̄ ) = P ( A B ) P ( A ∪ B  ̄ ) = 0.2 0.8 = 0.25 P(AB)=P(A)-P(A \overline {B})=1-P( \overline {A})-P(A \overline {B})=1-0.3-0.5=0.2,且P(A \cup \overline {B})=P(A)+P( \overline {B})-P(A \overline {B})=1-P( \overline {A})+1-P(B)-P(A \overline {B})=1-0.3+1-0.4-0.5=0.8,故P(B|A \cup \overline {B})= \frac {P(B(A \cup \overline {B}))}{P(A \cup \overline {B})}= \frac {P(AB)}{P(A \cup \overline {B})}= \frac{0.2}{0.8}=0.25 P(AB)=P(A)?P(AB)=1?P(A)?P(AB)=1?0.3?0.5=0.2,且P(A∪B)=P(A)+P(B)?P(AB)=1?P(A)+1?P(B)?P(AB)=1?0.3+1?0.4?0.5=0.8,故P(B∣A∪B)=P(A∪B)P(B(A∪B))?=P(A∪B)P(AB)?=0.80.2?=0.25 -
設A,B為兩事件, P(A)=P(B)=1/3, P(A|B)=1/6,求 P ( A  ̄ ∣ B  ̄ ) P( \overline {A}| \overline {B}) P(A∣B)=_____(結果小數(shù)點后保留3位)
【正確答案:0.583或7/12】
解析:
因 P ( A B ) = P ( B ) P ( A ∣ B ) = 1 3 × 1 6 = 1 18 , 有 P ( A ∪ B ) = P ( A ) + P ( B ) ? P ( A B ) = 1 3 + 1 3 ? 1 18 = 11 18 , 則 P ( A B  ̄ ) = P ( A ∪ B  ̄ ) = 1 ? P ( A ∪ B ) = 1 ? 11 18 = 7 18 , 且 P ( B  ̄ ) = 1 ? P ( B ) = 1 ? 1 3 = 2 3 , 故 P ( A  ̄ ∣ B  ̄ ) = P ( A B  ̄ ) P ( B  ̄ ) = 7 / 18 2 / 3 = 7 12 P(AB)=P(B)P(A|B)= \frac {1}{3} \times \frac {1}{6}= \frac {1}{18},有P(A \cup B)=P(A)+P(B)-P(AB)= \frac {1}{3}+ \frac {1}{3}- \frac {1}{18}= \frac {11}{18},則P( \overline {AB})=P( \overline {A \cup B})=1-P(A \cup B)=1- \frac {11}{18}= \frac {7}{18},且P( \overline {B})=1-P(B)=1- \frac {1}{3}= \frac {2}{3},故P( \overline {A}| \overline {B})= \frac {P( \overline {AB})}{P( \overline {B})}= \frac {7/18}{2/3}= \frac {7}{12} P(AB)=P(B)P(A∣B)=31?×61?=181?,有P(A∪B)=P(A)+P(B)?P(AB)=31?+31??181?=1811?,則P(AB)=P(A∪B)=1?P(A∪B)=1?1811?=187?,且P(B)=1?P(B)=1?31?=32?,故P(A∣B)=P(B)P(AB)?=2/37/18?=127? -
一盤晶體管有 8 只合格品,2只不合格品,從中不返回地一只一只取出,試求第二次取出的是合格品的概率_____(結果保留小數(shù)點后1位)
【正確答案:0.8或4/5或8/10】
解析:
設A?,A?分別表示 “第一次取出的是合格品、不合格品”,B表示“第二次取出的是合格品”,故所求概率為 P ( B ) ? P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) = 8 10 × 7 9 + 2 10 × 8 9 ? 72 90 = 0.8 P(B)-P(A_{1})P(B|A_{1})+P(A_{2})P(B|A_{2})=\frac {8}{10} \times \frac {7}{9}+ \frac {2}{10} \times \frac {8}{9}- \frac {72}{90}=0.8 P(B)?P(A1?)P(B∣A1?)+P(A2?)P(B∣A2?)=108?×97?+102?×98??9072?=0.8 -
鑰匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分別是50%、30%和20%,而掉在上述三處地方被找到的概率分別是0.8、0.3和0.1. 試求找到鑰匙的概率______;(結果小數(shù)點后保留2位)
【正確答案:0.51或51/100】
解析:
設A?,A?,A?分別表示“鑰匙掉在宿舍里、掉在教室里、掉在路上”,B表示 “找到鑰匙”,故所求概率為 P(B)=P(A?)P(B|A?)+P(A?)P(B|A?)+P(A?)P(B|A?)=0.5×0.8+0.3×0.3+0.2×0.1=0.51文章來源:http://www.zghlxwxcb.cn/news/detail-508171.html -
兩臺車床加工同樣的零件,第一臺出現(xiàn)不合格品的概率是 0.03,第二臺出現(xiàn)不合格品的概率是0.06,加工出來的零件放在一起,并且已知第一臺加工的零件比第二臺加工的零件多一倍.
求任取一個零件是合格品的概率______; (結果小數(shù)點后保留2位)
【正確答案:0.96 或24/25】
解析:
設A?,A?分別表示“取出的是第一臺、第二臺車床加工的零件”,B表示“取出的是合格品”,
所求概率為 P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) = 2 3 × 0.97 + 1 3 × 0.94 = 0.96 P(B)=P(A_{1})P(B|A_{1})+P(A_{2})P(B|A_{2})= \frac {2}{3} \times 0.97+ \frac {1}{3} \times 0.94=0.96 P(B)=P(A1?)P(B∣A1?)+P(A2?)P(B∣A2?)=32?×0.97+31?×0.94=0.96文章來源地址http://www.zghlxwxcb.cn/news/detail-508171.html
附:系列文章
序號 | 概率論 | 直達鏈接 |
---|---|---|
1 | 幾何概率、條件概率及全概率公式作業(yè) | https://want595.blog.csdn.net/article/details/131453732 |
2 | 條件概率與獨立性題目 | https://want595.blog.csdn.net/article/details/131445673 |
3 | 全概率與貝葉斯公式作業(yè) | https://want595.blog.csdn.net/article/details/131453510 |
4 | 貝葉斯公式的作業(yè) | https://want595.blog.csdn.net/article/details/131454384 |
5 | 獨立性作業(yè)(一) | https://want595.blog.csdn.net/article/details/131473856 |
6 | 獨立性作業(yè)(二) | https://want595.blog.csdn.net/article/details/131474088 |
7 | 隨機變量函數(shù)的分布 | https://want595.blog.csdn.net/article/details/131487458 |
8 | 隨機變量的方差與標準差作業(yè) | https://want595.blog.csdn.net/article/details/131487036 |
9 | 連續(xù)型隨機變量的分布函數(shù)及數(shù)學期望(一) | https://want595.blog.csdn.net/article/details/131482805 |
10 | 連續(xù)型隨機變量的分布函數(shù)及數(shù)學期望(二) | https://want595.blog.csdn.net/article/details/131482984 |
11 | 常用的離散分布 | https://want595.blog.csdn.net/article/details/131487115 |
12 | 常用連續(xù)分布(一) | https://want595.blog.csdn.net/article/details/131487232 |
13 | 常用連續(xù)分布(二) | https://want595.blog.csdn.net/article/details/131487306 |
14 | 多維隨機變量函數(shù)的分布(一) | https://want595.blog.csdn.net/article/details/131488172 |
15 | 多維隨機變量函數(shù)的分布(二) | https://want595.blog.csdn.net/article/details/131488282 |
16 | 多維隨機變量函數(shù)的分布(三) | https://want595.blog.csdn.net/article/details/131488391 |
17 | 多維隨機變量及其聯(lián)合分布作業(yè) | https://want595.blog.csdn.net/article/details/131487796 |
18 | 邊際分布的作業(yè) | https://want595.blog.csdn.net/article/details/131487983 |
19 | 大數(shù)定律 | https://want595.blog.csdn.net/article/details/131006831 |
20 | 中心極限定理(一) | https://want595.blog.csdn.net/article/details/131020595 |
21 | 中心極限定理(二) | https://want595.blog.csdn.net/article/details/131047033 |
到了這里,關于【概率論】幾何概率、條件概率及全概率公式作業(yè)的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網!