算法題 1: 數(shù)組和字符串
Q: How would you find the first non-repeating character in a string?
問:你如何找到字符串中的第一個不重復(fù)字符?
Explanation: Use a hash table to store the count of each character, then iterate through the string to find the first character with a count of one.
解釋: 使用哈希表存儲每個字符的計數(shù),然后遍歷字符串找到計數(shù)為一的第一個字符。
function findFirstNonRepeatingChar(string):
charCount = {}
for char in string:
if char in charCount:
charCount[char] += 1
else:
charCount[char] = 1
for char in string:
if charCount[char] == 1:
return char
return null
算法題 2: 鏈表
Q: How do you reverse a singly linked list without using extra space?
問:你如何在不使用額外空間的情況下反轉(zhuǎn)一個單鏈表?
Explanation: Iterate through the list and reverse the links between nodes.
解釋: 遍歷列表并反轉(zhuǎn)節(jié)點之間的鏈接。
function reverseLinkedList(head):
previous = null
current = head
while current is not null:
nextTemp = current.next
current.next = previous
previous = current
current = nextTemp
return previous
算法題 3: 樹和圖
Q: What is a depth-first search (DFS) and how would you implement it for a graph?
問:什么是深度優(yōu)先搜索(DFS)?你將如何為一個圖實現(xiàn)它?
Explanation: DFS is an algorithm for traversing or searching tree or graph data structures. It starts at the root and explores as far as possible along each branch before backtracking.
解釋: DFS是一種用于遍歷或搜索樹或圖數(shù)據(jù)結(jié)構(gòu)的算法。它從根開始,沿每個分支盡可能深入地探索,然后回溯。
function DFS(node, visited):
if node is in visited:
return
visited.add(node)
for each neighbor in node.neighbors:
DFS(neighbor, visited)
算法題 4: 排序和搜索
Q: Describe how quicksort works and mention its time complexity.
問:描述快速排序是如何工作的,并提及其時間復(fù)雜度。
Explanation: Quicksort works by selecting a ‘pivot’ element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The sub-arrays are then sorted recursively.
解釋: 快速排序通過從數(shù)組中選擇一個“基準(zhǔn)”元素,并根據(jù)其他元素是小于還是大于基準(zhǔn),將它們劃分為兩個子數(shù)組。然后遞歸地排序這些子數(shù)組。
function quicksort(array, low, high):
if low < high:
pivotIndex = partition(array, low, high)
quicksort(array, low, pivotIndex - 1)
quicksort(array, pivotIndex + 1, high)
Time Complexity: Average case is O(n log n), worst case is O(n^2).
時間復(fù)雜度: 平均情況是O(n log n),最壞情況是O(n^2)。
算法題 5: 動態(tài)規(guī)劃
Q: How would you solve the knapsack problem using dynamic programming?
問:你將如何使用動態(tài)規(guī)劃解決背包問題?
Explanation: Create a 2D array to store the maximum value that can be obtained with the given weight. Fill the table using the previous computations.
解釋: 創(chuàng)建一個二維數(shù)組來存儲給定重量可以獲得的最大值。使用之前的計算結(jié)果填充表格。
function knapsack(values, weights, capacity):
n = length(values)
dp = array of (n+1) x (capacity+1)
for i from 0 to n:
for w from 0 to capacity:
if i == 0 or w == 0:
dp[i][w] = 0
elif weights[i-1] <= w:
dp[i][w] = max(values[i-1] + dp[i-1][w-weights[i-1]], dp[i-1][w])
else:
dp[i][w] = dp[i-1][w]
return dp[n][capacity]
算法題 6: 數(shù)學(xué)和統(tǒng)計
Q: How do you compute the square root of a number without using the sqrt function?
問:如何在不使用 sqrt 函數(shù)的情況下計算一個數(shù)的平方根?
Explanation: Use a numerical method like Newton’s method to approximate the square root.
解釋: 使用牛頓法等數(shù)值方法來近似計算平方根。
function sqrt(number):
if number == 0 or number == 1:
return number
threshold = 0.00001 # Precision threshold
x = number
y = (x + number / x) / 2
while abs(x - y) > threshold:
x = y
y = (x + number / x) / 2
return y
算法題 7: 并發(fā)編程
Q: Explain how you would implement a thread-safe singleton pattern in Java.
問:解釋你將如何在Java中實現(xiàn)一個線程安全的單例模式。
Explanation: Use the initialization-on-demand holder idiom, which is thread-safe without requiring special language constructs.
解釋: 使用初始化需求持有者慣用法,它在不需要特殊語言構(gòu)造的情況下是線程安全的。
public class Singleton {
private Singleton() {}
private static class LazyHolder {
static final Singleton INSTANCE = new Singleton();
}
public static Singleton getInstance() {
return LazyHolder.INSTANCE;
}
}
算法題 8: 設(shè)計問題
Q: How would you design a system that scales horizontally?
問:你會如何設(shè)計一個可以水平擴(kuò)展的系統(tǒng)?
Explanation: Design the system to work with multiple instances behind a load balancer, use stateless services, and distribute the data across a database cluster.
解釋: 設(shè)計系統(tǒng)使其能夠在負(fù)載均衡器后面使用多個實例,使用無狀態(tài)服務(wù),并在數(shù)據(jù)庫集群中分布數(shù)據(jù)。
// No specific code, but architectural principles:
- Use load balancers to distribute traffic.
- Implement microservices for scalability.
- Use a distributed database system.
- Employ caching and message queues to handle load.
算法題 9: 實用工具
Q: Write a function to check if a string is a palindrome.
問:編寫一個函數(shù)檢查字符串是否是回文。
Explanation: Compare characters from the beginning and the end of the string moving towards the center.
解釋: 比較從字符串開始和結(jié)束向中心移動的字符。
function isPalindrome(string):
left = 0
right = length(string) - 1
while left < right:
if string[left] != string[right]:
return false
left += 1
right -= 1
return true
算法題 10: 編碼實踐
Q: How would you find all permutations of a string?
問:你如何找出一個字符串的所有排列?文章來源:http://www.zghlxwxcb.cn/news/detail-857683.html
Explanation: Use backtracking to swap characters and generate all permutations.
解釋: 使用回溯法交換字符并生成所有排列。文章來源地址http://www.zghlxwxcb.cn/news/detail-857683.html
function permute(string, l, r):
if l == r:
print string
else:
for i from l to r:
swap(string[l], string[i])
permute(string, l+1, r)
swap(string[l], string[i]) // backtrack
到了這里,關(guān)于面試算法十問2(中英文)的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!