国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn))

這篇具有很好參考價(jià)值的文章主要介紹了基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn))。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問。

?????????歡迎來到本博客????????

??博主優(yōu)勢(shì):??????博客內(nèi)容盡量做到思維縝密,邏輯清晰,為了方便讀者。

??座右銘:行百里者,半于九十。

??????本文目錄如下:??????

目錄

??1 概述

??2 運(yùn)行結(jié)果

??3?參考文獻(xiàn)

??4 Matlab代碼、數(shù)據(jù)、文章下載


??1 概述

摘要:
下一代物聯(lián)網(wǎng)(NG-IoT)應(yīng)用的出現(xiàn)為第六代(6G)移動(dòng)網(wǎng)絡(luò)引入了諸多挑戰(zhàn),如大規(guī)模連接、增加的網(wǎng)絡(luò)容量和極低的延遲。為了應(yīng)對(duì)上述挑戰(zhàn),超密集網(wǎng)絡(luò)已被廣泛認(rèn)為是一種可能的解決方案。然而,基站(BSs)的密集部署并不總是可行或經(jīng)濟(jì)高效的。無人機(jī)基站(DBSs)可以促進(jìn)網(wǎng)絡(luò)擴(kuò)展并有效應(yīng)對(duì)NG-IoT的要求。此外,由于其靈活性,它們可以在緊急情況下提供按需連接或應(yīng)對(duì)網(wǎng)絡(luò)流量的臨時(shí)增加。然而,由于有限的能量儲(chǔ)備和空地鏈路中信號(hào)質(zhì)量降低,DBS的最佳位置的確定并非易事。為此,群體智能方法可能是在三維(3D)空間中確定DBS的最佳位置的吸引人解決方案。在這項(xiàng)工作中,我們探討了著名的群體智能方法,包括布谷鳥搜索(CS)、大象群體優(yōu)化(EHO)、灰狼優(yōu)化(GWO)、帝王蝴蝶優(yōu)化(MBO)、鯊魚群算法(SSA)和粒子群優(yōu)化(PSO),并研究它們?cè)诮鉀Q上述問題中的性能和效率。具體而言,我們研究了在不同群體智能方法存在的情況下的三個(gè)場(chǎng)景的性能。此外,我們進(jìn)行了非參數(shù)統(tǒng)計(jì)測(cè)試,即弗里德曼和威爾科克森測(cè)試,以比較不同的方法。詳細(xì)文章見第4部分。

??2 運(yùn)行結(jié)果

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn)),算法,物聯(lián)網(wǎng),matlab

部分代碼:

%Scenarios 2 and 3
x=[1:10]; %x-axis vector

urban_pathloss(1,:)=CS_avg_pathloss(1,:);
urban_pathloss(2,:)=EHO_avg_pathloss(1,:);
urban_pathloss(3,:)=GWO_avg_pathloss(1,:);
urban_pathloss(4,:)=MBO_avg_pathloss(1,:);
urban_pathloss(5,:)=SSA_avg_pathloss(1,:);
urban_pathloss(6,:)=PSO_avg_pathloss(1,:);
figure
plot(x,urban_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in urban environment")

suburban_pathloss(1,:)=CS_avg_pathloss(2,:);
suburban_pathloss(2,:)=EHO_avg_pathloss(2,:);
suburban_pathloss(3,:)=GWO_avg_pathloss(2,:);
suburban_pathloss(4,:)=MBO_avg_pathloss(2,:);
suburban_pathloss(5,:)=SSA_avg_pathloss(2,:);
suburban_pathloss(6,:)=PSO_avg_pathloss(2,:);
figure
plot(x,suburban_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in suburban environment")

dense_pathloss(1,:)=CS_avg_pathloss(3,:);
dense_pathloss(2,:)=EHO_avg_pathloss(3,:);
dense_pathloss(3,:)=GWO_avg_pathloss(3,:);
dense_pathloss(4,:)=MBO_avg_pathloss(3,:);
dense_pathloss(5,:)=SSA_avg_pathloss(3,:);
dense_pathloss(6,:)=PSO_avg_pathloss(3,:);
figure
plot(x,dense_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in dense-urban environment")

highrise_pathloss(1,:)=CS_avg_pathloss(4,:);
highrise_pathloss(2,:)=EHO_avg_pathloss(4,:);
highrise_pathloss(3,:)=GWO_avg_pathloss(4,:);
highrise_pathloss(4,:)=MBO_avg_pathloss(4,:);
highrise_pathloss(5,:)=SSA_avg_pathloss(4,:);
highrise_pathloss(6,:)=PSO_avg_pathloss(4,:);
figure
plot(x,highrise_pathloss)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Average Pathloss")
title("Average pathloss as a function of the number of DBSs in high-rise urban environment")

% Coverage probability
%Urban environment - 1 , 90dB - 1
urban_coverage(1,:)=CS_avg_coverage(1,1,:);
urban_coverage(2,:)=EHO_avg_coverage(1,1,:);
urban_coverage(3,:)=GWO_avg_coverage(1,1,:);
urban_coverage(4,:)=MBO_avg_coverage(1,1,:);
urban_coverage(5,:)=SSA_avg_coverage(1,1,:);
urban_coverage(6,:)=PSO_avg_coverage(1,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=90dB)")

%Urban environment - 1 , 100dB - 2
urban_coverage(1,:)=CS_avg_coverage(2,1,:);
urban_coverage(2,:)=EHO_avg_coverage(2,1,:);
urban_coverage(3,:)=GWO_avg_coverage(2,1,:);
urban_coverage(4,:)=MBO_avg_coverage(2,1,:);
urban_coverage(5,:)=SSA_avg_coverage(2,1,:);
urban_coverage(6,:)=PSO_avg_coverage(2,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=100dB)")

%Urban environment - 1 , 110dB - 3
urban_coverage(1,:)=CS_avg_coverage(3,1,:);
urban_coverage(2,:)=EHO_avg_coverage(3,1,:);
urban_coverage(3,:)=GWO_avg_coverage(3,1,:);
urban_coverage(4,:)=MBO_avg_coverage(3,1,:);
urban_coverage(5,:)=SSA_avg_coverage(3,1,:);
urban_coverage(6,:)=PSO_avg_coverage(3,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=110dB)")

%Urban environment - 1 , 120dB - 4
urban_coverage(1,:)=CS_avg_coverage(4,1,:);
urban_coverage(2,:)=EHO_avg_coverage(4,1,:);
urban_coverage(3,:)=GWO_avg_coverage(4,1,:);
urban_coverage(4,:)=MBO_avg_coverage(4,1,:);
urban_coverage(5,:)=SSA_avg_coverage(4,1,:);
urban_coverage(6,:)=PSO_avg_coverage(4,1,:);
figure
plot(x,urban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in urban environment (T=120dB)")


%Suburban environment - 1 , 90dB - 1
suburban_coverage(1,:)=CS_avg_coverage(1,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(1,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(1,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(1,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(1,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(1,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=90dB)")

%Suburban environment - 1 , 100dB - 2
suburban_coverage(1,:)=CS_avg_coverage(2,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(2,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(2,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(2,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(2,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(2,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=100dB)")

%Suburban environment - 1 , 110dB - 3
suburban_coverage(1,:)=CS_avg_coverage(3,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(3,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(3,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(3,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(3,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(3,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=110dB)")

%Suburban environment - 1 , 120dB - 4
suburban_coverage(1,:)=CS_avg_coverage(4,2,:);
suburban_coverage(2,:)=EHO_avg_coverage(4,2,:);
suburban_coverage(3,:)=GWO_avg_coverage(4,2,:);
suburban_coverage(4,:)=MBO_avg_coverage(4,2,:);
suburban_coverage(5,:)=SSA_avg_coverage(4,2,:);
suburban_coverage(6,:)=PSO_avg_coverage(4,2,:);
figure
plot(x,suburban_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in suburban environment (T=120dB)")


%Dense urban environment - 1 , 90dB - 1
dense_coverage(1,:)=CS_avg_coverage(1,3,:);
dense_coverage(2,:)=EHO_avg_coverage(1,3,:);
dense_coverage(3,:)=GWO_avg_coverage(1,3,:);
dense_coverage(4,:)=MBO_avg_coverage(1,3,:);
dense_coverage(5,:)=SSA_avg_coverage(1,3,:);
dense_coverage(6,:)=PSO_avg_coverage(1,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=90dB)")

%Dense urban environment - 1 , 100dB - 2
dense_coverage(1,:)=CS_avg_coverage(2,3,:);
dense_coverage(2,:)=EHO_avg_coverage(2,3,:);
dense_coverage(3,:)=GWO_avg_coverage(2,3,:);
dense_coverage(4,:)=MBO_avg_coverage(2,3,:);
dense_coverage(5,:)=SSA_avg_coverage(2,3,:);
dense_coverage(6,:)=PSO_avg_coverage(2,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=100dB)")

%Dense urban environment - 1 , 110dB - 3
dense_coverage(1,:)=CS_avg_coverage(3,3,:);
dense_coverage(2,:)=EHO_avg_coverage(3,3,:);
dense_coverage(3,:)=GWO_avg_coverage(3,3,:);
dense_coverage(4,:)=MBO_avg_coverage(3,3,:);
dense_coverage(5,:)=SSA_avg_coverage(3,3,:);
dense_coverage(6,:)=PSO_avg_coverage(3,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=110dB)")

%Dense urban environment - 1 , 120dB - 4
dense_coverage(1,:)=CS_avg_coverage(4,3,:);
dense_coverage(2,:)=EHO_avg_coverage(4,3,:);
dense_coverage(3,:)=GWO_avg_coverage(4,3,:);
dense_coverage(4,:)=MBO_avg_coverage(4,3,:);
dense_coverage(5,:)=SSA_avg_coverage(4,3,:);
dense_coverage(6,:)=PSO_avg_coverage(4,3,:);
figure
plot(x,dense_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in dense urban environment (T=120dB)")


%High-rise urban environment - 1 , 90dB - 1
highrise_coverage(1,:)=CS_avg_coverage(1,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(1,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(1,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(1,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(1,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(1,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=90dB)")

%High-rise urban environment - 1 , 100dB - 2
highrise_coverage(1,:)=CS_avg_coverage(2,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(2,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(2,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(2,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(2,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(2,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=100dB)")

%High-rise urban environment - 1 , 110dB - 3
highrise_coverage(1,:)=CS_avg_coverage(3,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(3,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(3,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(3,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(3,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(3,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=110dB)")

%High-rise urban environment - 1 , 120dB - 4
highrise_coverage(1,:)=CS_avg_coverage(4,4,:);
highrise_coverage(2,:)=EHO_avg_coverage(4,4,:);
highrise_coverage(3,:)=GWO_avg_coverage(4,4,:);
highrise_coverage(4,:)=MBO_avg_coverage(4,4,:);
highrise_coverage(5,:)=SSA_avg_coverage(4,4,:);
highrise_coverage(6,:)=PSO_avg_coverage(4,4,:);
figure
plot(x,highrise_coverage)
legend("CS", "EHO", "GWO", "MBO", "SSA", "PSO")
xlabel("Number of DBSs")
ylabel("Coverage Probability")
title("Coverage probability as a function of the number of DBSs in high-rise urban environment (T=120dB)")

??3?參考文獻(xiàn)

文章中一些內(nèi)容引自網(wǎng)絡(luò),會(huì)注明出處或引用為參考文獻(xiàn),難免有未盡之處,如有不妥,請(qǐng)隨時(shí)聯(lián)系刪除。

OSCAR LIJEN HSU 1 AND CHE-RUNG LEE2文章來源地址http://www.zghlxwxcb.cn/news/detail-842337.html

??4 Matlab代碼、數(shù)據(jù)、文章下載

到了這里,關(guān)于基于多種優(yōu)化算法的物聯(lián)網(wǎng)無人機(jī)基站研究【布谷鳥搜索CS、大象群體優(yōu)化EHO、灰狼優(yōu)化GWO、帝王蝴蝶優(yōu)化MBO、鯊魚群算法SSA和粒子群優(yōu)化PSO】(Matlab代碼實(shí)現(xiàn))的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場(chǎng)。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包