本文作者: slience_me
項(xiàng)目場景:
在訓(xùn)練模型時候,將數(shù)據(jù)集輸入到網(wǎng)絡(luò)中去,在執(zhí)行卷積nn.conv1d()的時候,報出此錯誤
問題描述
報錯堆棧信息
Traceback (most recent call last):
File "D:\codeHub\AssumptionAnalysis\2024-01-08-ModernTCN\main.py", line 27, in <module>
pred_series = model(data_tensor_part)
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\codeHub\AssumptionAnalysis\2024-01-08-ModernTCN\model.py", line 191, in forward
x_emb = self.embed_layer(x) # [B, M, L] -> [B, M, D, N]
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "D:\codeHub\AssumptionAnalysis\2024-01-08-ModernTCN\model.py", line 76, in forward
x_emb = self.conv(x_pad) # [B*M, 1, L+P-S] -> [B*M, D, N]
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\conv.py", line 310, in forward
return self._conv_forward(input, self.weight, self.bias)
File "C:\Users\slience_me\.conda\envs\machine-learning\lib\site-packages\torch\nn\modules\conv.py", line 306, in _conv_forward
return F.conv1d(input, weight, bias, self.stride,
RuntimeError: expected scalar type Double but found Float
原因分析:
- tensor的數(shù)據(jù)類型dtype不正確
這個錯誤通常是由于數(shù)據(jù)類型不匹配導(dǎo)致的。在PyTorch中,張量有不同的數(shù)據(jù)類型,如float32(FloatTensor)和float64(DoubleTensor)等。在進(jìn)行計(jì)算時,PyTorch要求輸入的張量數(shù)據(jù)類型要與操作或模型所期望的數(shù)據(jù)類型一致,否則會出現(xiàn)這個錯誤。
例如,如果你的模型或操作期望輸入的數(shù)據(jù)類型為Double(float64),但你提供的張量類型是Float(float32),就會出現(xiàn)類似的錯誤。PyTorch會提示它期望的數(shù)據(jù)類型與實(shí)際提供的數(shù)據(jù)類型不匹配。
解決方案:
- 將數(shù)據(jù)類型轉(zhuǎn)為float32
- 或者將數(shù)據(jù)類型轉(zhuǎn)為float64
解決這個問題的方式通常是將數(shù)據(jù)類型轉(zhuǎn)換為匹配模型或操作所期望的類型??梢允褂?.to()
方法將張量轉(zhuǎn)換為正確的數(shù)據(jù)類型。例如,將Float類型的張量轉(zhuǎn)換為Double類型:文章來源:http://www.zghlxwxcb.cn/news/detail-791939.html
double_tensor = float_tensor.to(torch.double)
double_tensor = float_tensor.to(torch.float64)
# 或者
float_tensor = double_tensor.to(torch.float32)
另外,還需確保模型的輸入數(shù)據(jù)類型與模型定義時期望的數(shù)據(jù)類型相匹配,這樣可以避免出現(xiàn)數(shù)據(jù)類型不一致的錯誤。文章來源地址http://www.zghlxwxcb.cn/news/detail-791939.html
到了這里,關(guān)于【已解決】Pytorch RuntimeError: expected scalar type Double but found Float的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!