国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

python數(shù)據(jù)合并之merge函數(shù)

這篇具有很好參考價(jià)值的文章主要介紹了python數(shù)據(jù)合并之merge函數(shù)。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問(wèn)。

merge()函數(shù)介紹

說(shuō)明

pandas.merge(left, right, how: str = 'inner', on=None, left_on=None, right_on=None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes='_x', '_y', copy: bool = True, indicator: bool = False, validate=None)

功能:用于合并兩個(gè) DataFrame 對(duì)象或 Series對(duì)象。只能用于兩個(gè)表的拼接(左右拼接,不能用于上下拼接) 。
應(yīng)用場(chǎng)景數(shù)據(jù)合并 ( 數(shù)據(jù)合并的另一個(gè)常用函數(shù)是pd.concat()

參數(shù)說(shuō)明:

left,right
用于拼接的兩個(gè)表中,即使沒(méi)有確定誰(shuí)是主鍵,函數(shù)也會(huì)自動(dòng)將兩個(gè)表中的重復(fù)列作為主鍵,直接把一個(gè)表的名字傳遞給參數(shù)left,另一個(gè)表的名字傳遞給參數(shù)right

how
參數(shù)拼接方式,默認(rèn)內(nèi)連接(‘inner’)
內(nèi)連接inner:將兩個(gè)表主鍵一致的信息拼接到一起
外連接outer:保留兩個(gè)表的所有信息,如果遇到對(duì)不齊的部分,用NAN填充
左連接left:保留左表的全部信息,把右表滿足主鍵的行信息并進(jìn)來(lái),對(duì)不齊的部分用NAN填充
右連接right:保留右表的全部信息(同上)

python merge多個(gè)字段,python,pandas,數(shù)據(jù)分析

示例:

import pandas as pd

data1 =pd.DataFrame({'a':['a1','a2','a3'],
                   'b':['b1','b2','b3'],
                   'key':['a','b','c'],
                   'key1':['d','e','f']})
data2 = pd.DataFrame({'c':['c1','c2','c3'],
                      'd':['d1','d2','d3'],
                      'key':['a','b','a'],
                      'key1':['d','e','e']})

result=pd.merge(data1,data2,on = ['key','key1'])
result1=pd.merge(data1,data2,how ="left",on = ['key','key1'])
result2=pd.merge(data1,data2,how ="right",on = ['key','key1'])
result3=pd.merge(data1,data2,how ="inner",on = ['key','key1'])
result4=pd.merge(data1,data2,how ="outer",on = ['key','key1'])
print(data1)
print(data2)
print(result)
print(result1)
print(result2)
print(result3)
print(result4)

運(yùn)行結(jié)果:

    a   b key key1
0  a1  b1   a    d
1  a2  b2   b    e
2  a3  b3   c    f
    c   d key key1
0  c1  d1   a    d
1  c2  d2   b    e
2  c3  d3   a    e
    a   b key key1   c   d
0  a1  b1   a    d  c1  d1
1  a2  b2   b    e  c2  d2
    a   b key key1    c    d
0  a1  b1   a    d   c1   d1
1  a2  b2   b    e   c2   d2
2  a3  b3   c    f  NaN  NaN
     a    b key key1   c   d
0   a1   b1   a    d  c1  d1
1   a2   b2   b    e  c2  d2
2  NaN  NaN   a    e  c3  d3
    a   b key key1   c   d
0  a1  b1   a    d  c1  d1
1  a2  b2   b    e  c2  d2
     a    b key key1    c    d
0   a1   b1   a    d   c1   d1
1   a2   b2   b    e   c2   d2
2   a3   b3   c    f  NaN  NaN
3  NaN  NaN   a    e   c3   d3

Process finished with exit code 0

on
1、確定哪個(gè)字段作為主鍵
2、如果兩個(gè)表中有兩列以上信息相同,可以指定哪一列作為主鍵,如果不指定,相同信息的列都會(huì)作為拼接依據(jù)
3、merge()函數(shù)默認(rèn)的是內(nèi)連接,因此只拼接兩表中擁有相同主鍵信息的行數(shù)據(jù)。

示例:

import pandas as pd

data1 =pd.DataFrame({'key':['K0','K1','K2','K3'],
                    'A':['A0','A1','A2','A3'],
                    'B':['B0','B1','B2','B3']})
data3= pd.DataFrame({'key':['K0','K1','K2','K3'],})
data2 = pd.DataFrame({'key':['K0','K1','K2','K3'],
                            'C':['C0','C1','C2','C3'],
                            'D':['D0','D1','D2','D3']})
result1 = pd.merge(data1,data3,on = 'key')
result2 = pd.merge(data1,data2,on = 'key')
result3 = pd.merge(data3,data2,on = 'key')
print(data1)
print(data2)
print(data3)
print(result1)
print(result2)
print(result3)

運(yùn)行結(jié)果:

 key   A   B
0  K0  A0  B0
1  K1  A1  B1
2  K2  A2  B2
3  K3  A3  B3
  key   C   D
0  K0  C0  D0
1  K1  C1  D1
2  K2  C2  D2
3  K3  C3  D3
  key
0  K0
1  K1
2  K2
3  K3
  key   A   B
0  K0  A0  B0
1  K1  A1  B1
2  K2  A2  B2
3  K3  A3  B3
  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3
  key   C   D
0  K0  C0  D0
1  K1  C1  D1
2  K2  C2  D2
3  K3  C3  D3

Process finished with exit code 0

left-index, right-index
1、除指定字段可以作為主鍵外,索引也可以考慮作為拼接的主鍵
2、默認(rèn)為False,即不以索引為主鍵
3、如果兩個(gè)表的索引完全一樣,直接拼接效果很好,如果索引有不能對(duì)齊的地方,在默認(rèn)的內(nèi)連接情況下,只會(huì)把索引對(duì)齊的記錄進(jìn)行拼接

示例:

import pandas as pd

df1 = pd.DataFrame({'lkey': ['foo', 'ba', 'baz', 'fo'],
                    'value': [1, 2, 3, 4]},index=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
                     'value': [5, 6, 7, 8]},index=['A', 'c', 'B', 'h'])
# result1 = pd.merge(df1,df2,left_on ='lkey')
result2 = pd.merge(df1,df2,left_on ='lkey',right_on ='rkey')
result3 = pd.merge(df1,df2,left_on ='lkey',right_on ='rkey',suffixes=("_lf","_rf"))
result4=pd.merge(df1,df2,left_index=True, right_index=True)
#result6=pd.merge(df1,df2,left_index=True)
result5=pd.merge(df1,df2,left_index=True, right_index=True,suffixes=("_lf","_rf"))
print(df1)
print(df2)
# print(result1)
print(result2)
print(result3)
print(result4)
print(result5)
#print(result6)

運(yùn)行結(jié)果:

  lkey  value
A  foo      1
B   ba      2
C  baz      3
D   fo      4
  rkey  value
A  foo      5
c  bar      6
B  baz      7
h  foo      8
  lkey  value_x rkey  value_y
0  foo        1  foo        5
1  foo        1  foo        8
2  baz        3  baz        7
  lkey  value_lf rkey  value_rf
0  foo         1  foo         5
1  foo         1  foo         8
2  baz         3  baz         7
  lkey  value_x rkey  value_y
A  foo        1  foo        5
B   ba        2  baz        7
  lkey  value_lf rkey  value_rf
A  foo         1  foo         5
B   ba         2  baz         7

Process finished with exit code 0

left_on,right_on
兩個(gè)表里沒(méi)有完全一致的列名,但是有信息一致的列
該參數(shù)用來(lái)指定用來(lái)作主鍵的列名是哪一個(gè)
需要保證鍵值長(zhǎng)度相等,len(left_on) == len(right_on)

suffixes
兩個(gè)表中出現(xiàn)相同的列名,除了作為主鍵的列之外,其他名字相同的列被拼接到表中的時(shí)候會(huì)有一個(gè)后綴表示這個(gè)列來(lái)自于哪個(gè)表格,用于區(qū)分名字相同的列,這個(gè)后綴默認(rèn)是(x和y)。這個(gè)后綴是可以自定義修改的

示例:

import pandas as pd

df1 = pd.DataFrame({'lkey': ['foo', 'ba', 'baz', 'fo'],
                    'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
                     'value': [5, 6, 7, 8]})
# result1 = pd.merge(df1,df2,left_on ='lkey')
result2 = pd.merge(df1,df2,left_on ='lkey',right_on ='rkey')
result3 = pd.merge(df1,df2,left_on ='lkey',right_on ='rkey',suffixes=("_lf","_rf"))
print(df1)
print(df2)
# print(result1)
print(result2)
print(result3)

運(yùn)行結(jié)果:

  lkey  value
0  foo      1
1   ba      2
2  baz      3
3   fo      4
  rkey  value
0  foo      5
1  bar      6
2  baz      7
3  foo      8
  lkey  value_x rkey  value_y
0  foo        1  foo        5
1  foo        1  foo        8
2  baz        3  baz        7
  lkey  value_lf rkey  value_rf
0  foo         1  foo         5
1  foo         1  foo         8
2  baz         3  baz         7

Process finished with exit code 0

indicator
用于顯示拼接后的表中信息來(lái)自哪個(gè)表
在表的最后一列顯示left_only /right_only/both
默認(rèn)False,可以修改為True
示例:

import pandas as pd

data1 =pd.DataFrame({'key':['K','1','K2','K3'],
                     'A':['A0','1','A2','A3'],
                     'B':['B0','B1','B2','B3']})
data2 = pd.DataFrame({'key':['K0','K1','K2','K3'],
                      'C':['C0','C1','C2','C3'],
                      'D':['D0','D1','D2','D3']})
result=pd.merge(data1,data2,how ='outer',on = ['key'],indicator = True)
print(data1)
print(data2)
print(result)

運(yùn)行結(jié)果:

  key   A   B
0   K  A0  B0
1   1   1  B1
2  K2  A2  B2
3  K3  A3  B3
  key   C   D
0  K0  C0  D0
1  K1  C1  D1
2  K2  C2  D2
3  K3  C3  D3
  key    A    B    C    D      _merge
0   K   A0   B0  NaN  NaN   left_only
1   1    1   B1  NaN  NaN   left_only
2  K2   A2   B2   C2   D2        both
3  K3   A3   B3   C3   D3        both
4  K0  NaN  NaN   C0   D0  right_only
5  K1  NaN  NaN   C1   D1  right_only

Process finished with exit code 0

參考文件:

https://zhuanlan.zhihu.com/p/340770510文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-742647.html

到了這里,關(guān)于python數(shù)據(jù)合并之merge函數(shù)的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來(lái)自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場(chǎng)。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

覺(jué)得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包