1.Flink數(shù)據(jù)源
? ? ? ? Flink可以從各種數(shù)據(jù)源獲取數(shù)據(jù),然后構建DataStream 進行處理轉換。source就是整個數(shù)據(jù)處理程序的輸入端。
數(shù)據(jù)集合 數(shù)據(jù)文件 Socket數(shù)據(jù) kafka數(shù)據(jù) 自定義Source
2.案例
2.1.從集合中獲取數(shù)據(jù)
? ? ? ? 創(chuàng)建 FlinkSource_List 類,再創(chuàng)建個 Student 類(姓名、年齡、性別三個屬性就行,反正測試用)
package com.qiyu;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.ArrayList;
/**
* @author MR.Liu
* @version 1.0
* @data 2023-10-18 16:13
*/
public class FlinkSource_List {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
ArrayList<Student> clicks = new ArrayList<>();
clicks.add(new Student("Mary",25,1));
clicks.add(new Student("Bob",26,2));
DataStream<Student> stream = env.fromCollection(clicks);
stream.print();
env.execute();
}
}
運行結果:
Student{name='Mary', age=25, sex=1}
Student{name='Bob', age=26, sex=2}
2.2.從文件中讀取數(shù)據(jù)
文件數(shù)據(jù):
spark
hello world kafka spark
hadoop spark
package com.qiyu;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* @author MR.Liu
* @version 1.0
* @data 2023-10-18 16:31
*/
public class FlinkSource_File {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStream<String> stream = env.readTextFile("input/words.txt");
stream.print();
env.execute();
}
}
運行結果:(沒做任何處理)
spark
hello world kafka spark
hadoop spark
2.3.從Socket中讀取數(shù)據(jù)
package com.qiyu;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* @author MR.Liu
* @version 1.0
* @data 2023-10-18 17:41
*/
public class FlinkSource_Socket {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
// 2. 讀取文本流
DataStreamSource<String> lineDSS = env.socketTextStream("192.168.220.130",
7777);
lineDSS.print();
env.execute();
}
}
運行結果:
服務器上執(zhí)行:
nc -lk 7777
瘋狂輸出
控制臺打印結果?
6> hello
7> world
2.4.從Kafka中讀取數(shù)據(jù)
pom.xml 添加Kafka連接依賴
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
package com.qiyu;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties;
/**
* @author MR.Liu
* @version 1.0
* @data 2023-10-19 10:01
*/
public class FlinkSource_Kafka {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "hadoop102:9092");
properties.setProperty("group.id", "consumer-group");
properties.setProperty("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
properties.setProperty("auto.offset.reset", "latest");
DataStreamSource<String> stream = env.addSource(
new FlinkKafkaConsumer<String>("clicks", new SimpleStringSchema(), properties
));
stream.print("Kafka");
env.execute();
}
}
啟動 zk 和kafka
創(chuàng)建topic
bin/kafka-topics.sh --create --bootstrap-server hadoop102:9092 --replication-factor 1 --partitions 1 --topic clicks
生產者、消費者命令
bin/kafka-console-producer.sh --bootstrap-server hadoop102:9092 --topic clicks
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic clicks --from-beginning
啟動生產者命令后瘋狂輸入?
運行java類,運行結果:和生產者輸入的是一樣的
Kafka> flinks
Kafka> hadoop
Kafka> hello
Kafka> nihaop
2.5.從自定義Source中讀取數(shù)據(jù)
? ? ? ? 大多數(shù)情況下,前面幾個數(shù)據(jù)源已經(jīng)滿足需求了。但是遇到特殊情況我們需要自定義的數(shù)據(jù)源。實現(xiàn)方式如下:
? ? ? ? 1.編輯自定義源Source
package com.qiyu;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Calendar;
import java.util.Random;
/**
* @author MR.Liu
* @version 1.0
* @data 2023-10-19 10:37
*/
/***
* 主要實現(xiàn)2個方法 run() 和 cancel()
*/
public class FlinkSource_Custom implements SourceFunction<Student> {
// 聲明一個布爾變量,作為控制數(shù)據(jù)生成的標識位
private Boolean running = true;
@Override
public void run(SourceContext<Student> sourceContext) throws Exception {
Random random = new Random(); // 在指定的數(shù)據(jù)集中隨機選取數(shù)據(jù)
String[] name = {"Mary", "Alice", "Bob", "Cary"};
int[] sex = {1,2};
int age = 0;
while (running) {
sourceContext.collect(new Student(
name[random.nextInt(name.length)],
sex[random.nextInt(sex.length)],
random.nextInt(100)
));
// 隔 1 秒生成一個點擊事件,方便觀測
Thread.sleep(1000);
}
}
@Override
public void cancel() {
running = false;
}
}
? ? ? ? 2.編寫主程序
package com.qiyu;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* @author MR.Liu
* @version 1.0
* @data 2023-10-19 10:46
*/
public class FlinkSource_Custom2 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//有了自定義的 source function,調用 addSource 方法
DataStreamSource<Student> stream = env.addSource(new FlinkSource_Custom());
stream.print("SourceCustom");
env.execute();
}
}
?運行主程序,運行結果:
SourceCustom> Student{name='Mary', age=1, sex=46}
SourceCustom> Student{name='Cary', age=2, sex=52}
SourceCustom> Student{name='Bob', age=1, sex=14}
SourceCustom> Student{name='Alice', age=1, sex=84}
SourceCustom> Student{name='Alice', age=2, sex=82}
SourceCustom> Student{name='Cary', age=1, sex=28}文章來源:http://www.zghlxwxcb.cn/news/detail-739375.html.............文章來源地址http://www.zghlxwxcb.cn/news/detail-739375.html
到了這里,關于Flink學習之旅:(三)Flink源算子(數(shù)據(jù)源)的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網(wǎng)!