對(duì)于iOS開發(fā)者而言,CocoaPods并不陌生,通過pod相關(guān)的命令操作,就可以很方便的將項(xiàng)目中用到的三方依賴庫資源集成到項(xiàng)目環(huán)境中,大大的提升了開發(fā)的效率。CocoaPods作為iOS項(xiàng)目的包管理工具,它在命令行背后做了什么操作?而又是通過什么樣的方式將命令指令聲明出來供我們使用的?這些實(shí)現(xiàn)的背后底層邏輯是什么?都是本文想要探討挖掘的。
一、Ruby是如何讓系統(tǒng)能夠識(shí)別已經(jīng)安裝的Pods指令的?
我們都知道在使用CocoaPods管理項(xiàng)目三方庫之前,需要安裝Ruby環(huán)境,同時(shí)基于Ruby的包管理工具gem再去安裝CocoaPods。通過安裝過程可以看出來,CocoaPods本質(zhì)就是Ruby的一個(gè)gem包。而安裝Cocoapods的時(shí)候,使用了以下的安裝命令:
sudo gem install cocoapods
安裝完成之后,就可以使用基于Cocoapods的 pod xxxx
相關(guān)命令了。gem install xxx
到底做了什么也能讓 Terminal
正常的識(shí)別 pod 命令?gem的工作原理又是什么?了解這些之前,可以先看一下 RubyGems
的環(huán)境配置,通過以下的命令:
gem environment
通過以上的命令,可以看到Ruby的版本信息,RubyGem的版本,以及gems包安裝的路徑,進(jìn)入安裝路徑 /Library/Ruby/Gems/2.6.0 后,我們能看到當(dāng)前的Ruby環(huán)境下所安裝的擴(kuò)展包,這里能看到我們熟悉的Cocoapods相關(guān)的功能包。除了安裝包路徑之外,還有一個(gè) EXECUTABLE DIRECTORY 執(zhí)行目錄 /usr/local/bin,可以看到擁有可執(zhí)行權(quán)限的pod文件,如下:
預(yù)覽一下pod文件內(nèi)容:
#!/System/Library/Frameworks/Ruby.framework/Versions/2.6/usr/bin/ruby
#
# This file was generated by RubyGems.
#
# The application 'cocoapods' is installed as part of a gem, and
# this file is here to facilitate running it.
#
require 'rubygems'
version = ">= 0.a"
str = ARGV.first
if str
str = str.b[/\A_(.*)_\z/, 1]
if str and Gem::Version.correct?(str)
version = str
ARGV.shift
end
end
if Gem.respond_to?(:activate_bin_path)
load Gem.activate_bin_path('cocoapods', 'pod', version)
else
gem "cocoapods", version
load Gem.bin_path("cocoapods", "pod", version)
end
根據(jù)文件注釋內(nèi)容可以發(fā)現(xiàn),當(dāng)前的可執(zhí)行文件是 RubyGems
在安裝 Cocoapods
的時(shí)候自動(dòng)生成的,同時(shí)會(huì)將當(dāng)前的執(zhí)行文件放到系統(tǒng)的環(huán)境變量路徑中,也即存放到了 /usr/local/bin
中了,這也就解釋了為什么我們通過gem安裝cocoapods之后,就立馬能夠識(shí)別pod可執(zhí)行環(huán)境了。
雖然能夠識(shí)別pod可執(zhí)行文件,但是具體的命令參數(shù)是如何進(jìn)行識(shí)別與實(shí)現(xiàn)呢?繼續(xù)看以上的pod的文件源碼,會(huì)發(fā)現(xiàn)最終都指向了 Gem
的 activate_bin_path
與 bin_path
方法,為了搞清楚Gem到底做了什么,在官方的RubyGems源碼的rubygems.rb
文件中找到了兩個(gè)方法的相關(guān)定義與實(shí)現(xiàn),摘取了主要的幾個(gè)方法實(shí)現(xiàn),內(nèi)容如下:
##
# Find the full path to the executable for gem +name+. If the +exec_name+
# is not given, an exception will be raised, otherwise the
# specified executable's path is returned. +requirements+ allows
# you to specify specific gem versions.
#
# A side effect of this method is that it will activate the gem that
# contains the executable.
#
# This method should *only* be used in bin stub files.
def self.activate_bin_path(name, exec_name = nil, *requirements) # :nodoc:
spec = find_spec_for_exe name, exec_name, requirements
Gem::LOADED_SPECS_MUTEX.synchronize do
spec.activate
finish_resolve
end
spec.bin_file exec_name
end
def self.find_spec_for_exe(name, exec_name, requirements)
#如果沒有提供可執(zhí)行文件的名稱,則拋出異常
raise ArgumentError, "you must supply exec_name" unless exec_name
# 創(chuàng)建一個(gè)Dependency對(duì)象
dep = Gem::Dependency.new name, requirements
# 獲取已經(jīng)加載的gem
loaded = Gem.loaded_specs[name]
# 存在直接返回
return loaded if loaded && dep.matches_spec?(loaded)
# 查找復(fù)合條件的gem配置
specs = dep.matching_specs(true)
specs = specs.find_all do |spec|
# 匹配exec_name 執(zhí)行名字,如果匹配結(jié)束查找
spec.executables.include? exec_name
end if exec_name
# 如果沒有找到符合條件的gem,拋出異常
unless spec = specs.first
msg = "can't find gem #{dep} with executable #{exec_name}"
raise Gem::GemNotFoundException, msg
end
#返回結(jié)果
spec
end
private_class_method :find_spec_for_exe
##
# Find the full path to the executable for gem +name+. If the +exec_name+
# is not given, an exception will be raised, otherwise the
# specified executable's path is returned. +requirements+ allows
# you to specify specific gem versions.
def self.bin_path(name, exec_name = nil, *requirements)
requirements = Gem::Requirement.default if
requirements.empty?
# 通過exec_name 查找gem中可執(zhí)行文件
find_spec_for_exe(name, exec_name, requirements).bin_file exec_name
end
class Gem::Dependency
def matching_specs(platform_only = false)
env_req = Gem.env_requirement(name)
matches = Gem::Specification.stubs_for(name).find_all do |spec|
requirement.satisfied_by?(spec.version) && env_req.satisfied_by?(spec.version)
end.map(&:to_spec)
if prioritizes_bundler?
require_relative "bundler_version_finder"
Gem::BundlerVersionFinder.prioritize!(matches)
end
if platform_only
matches.reject! do |spec|
spec.nil? || !Gem::Platform.match_spec?(spec)
end
end
matches
end
end
class Gem::Specification < Gem::BasicSpecification
def self.stubs_for(name)
if @@stubs
@@stubs_by_name[name] || []
else
@@stubs_by_name[name] ||= stubs_for_pattern("#{name}-*.gemspec").select do |s|
s.name == name
end
end
end
end
通過當(dāng)前的實(shí)現(xiàn)可以看出在兩個(gè)方法實(shí)現(xiàn)中,通過 find_spec_for_exe 方法依據(jù)名稱name查找sepc對(duì)象,匹配成功之后返回sepc對(duì)象,最終通過spec對(duì)象中的bin_file方法來進(jìn)行執(zhí)行相關(guān)的命令。以下為gems安裝的配置目錄集合:
注:bin_file
方法的實(shí)現(xiàn)方式取決于 gem 包
的類型和所使用的操作系統(tǒng)。在大多數(shù)情況下,它會(huì)根據(jù)操作系統(tǒng)的不同,使用不同的查找算法來確定二進(jìn)制文件的路徑。例如,在Windows
上,它會(huì)搜索 gem
包的 bin
目錄,而在 Unix
上,它會(huì)搜索 gem
包的 bin
目錄和 PATH
環(huán)境變量中的路徑。
通過當(dāng)前的實(shí)現(xiàn)可以看出在兩個(gè)方法實(shí)現(xiàn)中,find_spec_for_exe 方法會(huì)遍歷所有已安裝的 gem 包,查找其中包含指定可執(zhí)行文件的 gem 包。如果找到了匹配的 gem 包,則會(huì)返回該 gem 包的 Gem::Specification 對(duì)象,并調(diào)用其 bin_file 方法獲取二進(jìn)制文件路徑。而 bin_file
是在 Gem::Specification 類中定義的。它是一個(gè)實(shí)例方法,用于查找與指定的可執(zhí)行文件 exec_name 相關(guān)聯(lián)的 gem 包的二進(jìn)制文件路徑,定義實(shí)現(xiàn)如下:
def bin_dir
@bin_dir ||= File.join gem_dir, bindir
end
##
# Returns the full path to installed gem's bin directory.
#
# NOTE: do not confuse this with +bindir+, which is just 'bin', not
# a full path.
def bin_file(name)
File.join bin_dir, name
end
到這里,可以看出,pod命令本質(zhì)是執(zhí)行了RubyGems 的 find_spec_for_exe 方法,用來查找并執(zhí)行g(shù)ems安裝目錄下的bin目錄,也即是 /Library/Ruby/Gems/2.6.0
目錄下的gem包下的bin目錄。而針對(duì)于pod的gem包,如下所示:
至此,可以發(fā)現(xiàn),由系統(tǒng)執(zhí)行環(huán)境 /usr/local/bin 中的可執(zhí)行文件 pod 引導(dǎo)觸發(fā),Ruby通過 Gem.bin_path("cocoapods", "pod", version) 與 Gem.activate_bin_path('cocoapods', 'pod', version) 進(jìn)行轉(zhuǎn)發(fā),再到gems包安裝目錄的gem查找方法 find_spec_for_exe,最終轉(zhuǎn)到gems安裝包下的bin目錄的執(zhí)行文件進(jìn)行命令的最終執(zhí)行,流程大致如下:
而對(duì)于pod的命令又是如何進(jìn)行識(shí)別區(qū)分的呢?剛剛的分析可以看出對(duì)于gems安裝包的bin下的執(zhí)行文件才是最終的執(zhí)行內(nèi)容,打開cocoapod的bin目錄下的pod可執(zhí)行文件,如下:
#!/usr/bin/env ruby
if Encoding.default_external != Encoding::UTF_8
if ARGV.include? '--no-ansi'
STDERR.puts <<-DOC
WARNING: CocoaPods requires your terminal to be using UTF-8 encoding.
Consider adding the following to ~/.profile:
export LANG=en_US.UTF-8
DOC
else
STDERR.puts <<-DOC
\e[33mWARNING: CocoaPods requires your terminal to be using UTF-8 encoding.
Consider adding the following to ~/.profile:
export LANG=en_US.UTF-8
\e[0m
DOC
end
end
if $PROGRAM_NAME == __FILE__ && !ENV['COCOAPODS_NO_BUNDLER']
ENV['BUNDLE_GEMFILE'] = File.expand_path('../../Gemfile', __FILE__)
require 'rubygems'
require 'bundler/setup'
$LOAD_PATH.unshift File.expand_path('../../lib', __FILE__)
elsif ENV['COCOAPODS_NO_BUNDLER']
require 'rubygems'
gem 'cocoapods'
end
STDOUT.sync = true if ENV['CP_STDOUT_SYNC'] == 'TRUE'
require 'cocoapods'
# 環(huán)境變量判斷是否配置了profile_filename,如果配置了按照配置內(nèi)容生成
if profile_filename = ENV['COCOAPODS_PROFILE']
require 'ruby-prof'
reporter =
case (profile_extname = File.extname(profile_filename))
when '.txt'
RubyProf::FlatPrinterWithLineNumbers
when '.html'
RubyProf::GraphHtmlPrinter
when '.callgrind'
RubyProf::CallTreePrinter
else
raise "Unknown profiler format indicated by extension: #{profile_extname}"
end
File.open(profile_filename, 'w') do |io|
reporter.new(RubyProf.profile { Pod::Command.run(ARGV) }).print(io)
end
else
Pod::Command.run(ARGV)
end
可以發(fā)現(xiàn),pod命令參數(shù)的解析運(yùn)行是通過 Pod::Command.run(ARGV) 實(shí)現(xiàn)的。通過該線索,我們接著查看Pod庫源碼的Command類的run方法都做了什么?該類在官方源碼的lib/cocoapods/command.rb 定義的,摘取了部分內(nèi)容如下:
class Command < CLAide::Command
def self.run(argv)
ensure_not_root_or_allowed! argv
verify_minimum_git_version!
verify_xcode_license_approved!
super(argv)
ensure
UI.print_warnings
end
end
源碼中在進(jìn)行命令解析之前,進(jìn)行了前置條件檢查判斷: 1、檢查當(dāng)前用戶是否為 root 用戶或是否在允許的用戶列表中 2、檢查當(dāng)前系統(tǒng)上安裝的 Git 版本是否符合最低要求 3、檢查當(dāng)前系統(tǒng)上的 Xcode 許可是否已經(jīng)授權(quán)
如果都沒有問題,則會(huì)調(diào)用父類的 run
方法,而命令的解析可以看出來應(yīng)該是在其父類 CLAide::Command
進(jìn)行的,CLAide
是 CocoaPods
的命令行解析庫,在 command.rb
文件中,可以找到如下 Command
類的實(shí)現(xiàn):
def initialize(argv)
argv = ARGV.coerce(argv)
@verbose = argv.flag?('verbose')
@ansi_output = argv.flag?('ansi', Command.ansi_output?)
@argv = argv
@help_arg = argv.flag?('help')
end
def self.run(argv = [])
plugin_prefixes.each do |plugin_prefix|
PluginManager.load_plugins(plugin_prefix)
end
# 轉(zhuǎn)換成ARGV對(duì)象
argv = ARGV.coerce(argv)
# 處理有效命令行參數(shù)
command = parse(argv)
ANSI.disabled = !command.ansi_output?
unless command.handle_root_options(argv)
# 命令處理
command.validate!
# 運(yùn)行命令(由子類進(jìn)行繼承實(shí)現(xiàn)運(yùn)行)
command.run
end
rescue Object => exception
handle_exception(command, exception)
end
def self.parse(argv)
argv = ARGV.coerce(argv)
cmd = argv.arguments.first
# 命令存在,且子命令存在,進(jìn)行再次解析
if cmd && subcommand = find_subcommand(cmd)
# 移除第一個(gè)參數(shù)
argv.shift_argument
# 解析子命令
subcommand.parse(argv)
# 不能執(zhí)行的命令直接加載默認(rèn)命令
elsif abstract_command? && default_subcommand
load_default_subcommand(argv)
# 無內(nèi)容則創(chuàng)建一個(gè)comand實(shí)例返回
else
new(argv)
end
end
# 抽象方法,由其子類進(jìn)行實(shí)現(xiàn)
def run
raise 'A subclass should override the `CLAide::Command#run` method to ' \
'actually perform some work.'
end
# 返回 [CLAide::Command, nil]
def self.find_subcommand(name)
subcommands_for_command_lookup.find { |sc| sc.command == name }
end
通過將 argv
轉(zhuǎn)換為 ARGV
對(duì)象(ARGV 是一個(gè) Ruby 內(nèi)置的全局變量,它是一個(gè)數(shù)組,包含了從命令行傳遞給 Ruby 程序的參數(shù)。例如:ARGV[0] 表示第一個(gè)參數(shù),ARGV[1] 表示第二個(gè)參數(shù),以此類推),然后獲取第一個(gè)參數(shù)作為命令名稱 cmd
。如果 cmd
存在,并且能夠找到對(duì)應(yīng)的子命令 subcommand
,則將 argv
中的第一個(gè)參數(shù)移除,并調(diào)用 subcommand.parse(argv)
方法解析剩余的參數(shù)。如果沒有指定命令或者找不到對(duì)應(yīng)的子命令,但當(dāng)前命令是一個(gè)抽象命令(即不能直接執(zhí)行),并且有默認(rèn)的子命令,則加載默認(rèn)子命令并解析參數(shù)。否則,創(chuàng)建一個(gè)新的實(shí)例,并將 argv
作為參數(shù)傳遞給它。
最終在轉(zhuǎn)換完成之后,通過調(diào)用抽象方法run
調(diào)用子類的實(shí)現(xiàn)來執(zhí)行解析后的指令內(nèi)容。到這里,順其自然的就想到了Cocoapods的相關(guān)指令實(shí)現(xiàn)必然繼承自了CLAide::Command
類,并實(shí)現(xiàn)了其抽象方法 run
。為了驗(yàn)證這個(gè)推斷,我們接著看Cocoapods的源碼,在文件 Install.rb
中,有這個(gè) Install 類的定義與實(shí)現(xiàn),摘取了核心內(nèi)容:
module Pod
class Command
class Install < Command
include RepoUpdate
include ProjectDirectory
def self.options
[
['--repo-update', 'Force running `pod repo update` before install'],
['--deployment', 'Disallow any changes to the Podfile or the Podfile.lock during installation'],
['--clean-install', 'Ignore the contents of the project cache and force a full pod installation. This only ' \
'applies to projects that have enabled incremental installation'],
].concat(super).reject { |(name, _)| name == '--no-repo-update' }
end
def initialize(argv)
super
@deployment = argv.flag?('deployment', false)
@clean_install = argv.flag?('clean-install', false)
end
# 實(shí)現(xiàn)CLAide::Command 的抽象方法
def run
# 驗(yàn)證工程目錄podfile 是否存在
verify_podfile_exists!
# 獲取installer對(duì)象
installer = installer_for_config
# 更新pods倉庫
installer.repo_update = repo_update?(:default => false)
# 設(shè)置更新標(biāo)識(shí)為關(guān)閉
installer.update = false
# 透?jìng)饕蕾囋O(shè)置
installer.deployment = @deployment
# 透?jìng)髟O(shè)置
installer.clean_install = @clean_install
installer.install!
end
end
end
end
通過源碼可以看出,cocoaPods
的命令解析是通過自身的 CLAide::Command
進(jìn)行解析處理的,而最終的命令實(shí)現(xiàn)則是通過繼承自 Command
的子類,通過實(shí)現(xiàn)抽象方法 run
來實(shí)現(xiàn)的具體命令功能的。到這里,關(guān)于Pod 命令的識(shí)別以及Pod 命令的解析與運(yùn)行是不是非常清晰了。
階段性小結(jié)一下,我們?cè)赥erminal中進(jìn)行pod命令運(yùn)行的過程中,背后都經(jīng)歷了哪些過程?整個(gè)運(yùn)行過程可以簡(jiǎn)述如下: 1、通過Gem生成在系統(tǒng)環(huán)境目錄下的可執(zhí)行文件 pod,通過該文件
引導(dǎo) RubyGems 查找 gems包目錄下的sepc配置對(duì)象,也即是cocoaPods的sepc配置對(duì)象 2、查找到配置對(duì)象,通過bin_file方法查找cocoaPods包路徑中bin下的可執(zhí)行文件 3、運(yùn)行rubygems對(duì)應(yīng)cocoaPods的gem安裝包目錄中bin下的二進(jìn)制可執(zhí)行文件pod 4、通過執(zhí)行 Pod::Command.run(ARGV)
解析命令與參數(shù)并找出最終的 Command 對(duì)象執(zhí)行其run方法 5、在繼承自Command的子類的run實(shí)現(xiàn)中完成各個(gè)命令行指令的實(shí)現(xiàn)
以上的13階段實(shí)際上是Ruby的指令轉(zhuǎn)發(fā)過程,最終將命令轉(zhuǎn)發(fā)給了對(duì)應(yīng)的gems包進(jìn)行最終的處理。而45則是整個(gè)的處理過程。同時(shí)在Cocoapods的源碼實(shí)現(xiàn)中,可以發(fā)現(xiàn)每個(gè)命令都對(duì)應(yīng)一個(gè) Ruby 類,該類繼承自 CLAide::Command 類。通過繼承當(dāng)前類,可以定義該命令所支持的選項(xiàng)和參數(shù),并在執(zhí)行命令時(shí)解析這些選項(xiàng)和參數(shù)。
二、Ruby 是如何動(dòng)態(tài)生成可執(zhí)行文件并集成到系統(tǒng)環(huán)境變量中的?
剛剛在上一節(jié)賣了個(gè)關(guān)子,在安裝完成Ruby的gem包之后,在系統(tǒng)環(huán)境變量中就自動(dòng)生成了相關(guān)的可執(zhí)行文件命令。那么Ruby在這個(gè)過程中又做了什么呢?既然是在gem安裝的時(shí)候會(huì)動(dòng)態(tài)生成,不如就以gem的安裝命令 sudo gem install xxx 作為切入點(diǎn)去看相關(guān)的處理過程。我們進(jìn)入系統(tǒng)環(huán)境變量路徑 /usr/bin 找到 Gem 可執(zhí)行二進(jìn)制文件,如下:
打開gem,它的內(nèi)容如下:
#!/System/Library/Frameworks/Ruby.framework/Versions/2.6/usr/bin/ruby
#--
# Copyright 2006 by Chad Fowler, Rich Kilmer, Jim Weirich and others.
# All rights reserved.
# See LICENSE.txt for permissions.
#++
require 'rubygems'
require 'rubygems/gem_runner'
require 'rubygems/exceptions'
required_version = Gem::Requirement.new ">= 1.8.7"
unless required_version.satisfied_by? Gem.ruby_version then
abort "Expected Ruby Version #{required_version}, is #{Gem.ruby_version}"
end
args = ARGV.clone
begin
Gem::GemRunner.new.run args
rescue Gem::SystemExitException => e
exit e.exit_code
end
可以發(fā)現(xiàn)最終通過執(zhí)行 Gem::GemRunner.new.run args 來完成安裝,顯然安裝的過程就在 Gem::GemRunner 類中。依舊查看RubyGems的源碼,在 gem_runner.rb 中,有著以下的定義:
def run(args)
build_args = extract_build_args args
do_configuration args
begin
Gem.load_env_plugins
rescue StandardError
nil
end
Gem.load_plugins
cmd = @command_manager_class.instance
cmd.command_names.each do |command_name|
config_args = Gem.configuration[command_name]
config_args = case config_args
when String
config_args.split " "
else
Array(config_args)
end
Gem::Command.add_specific_extra_args command_name, config_args
end
cmd.run Gem.configuration.args, build_args
end
可以看出來命令的執(zhí)行最終轉(zhuǎn)到了 cmd.run Gem.configuration.args, build_args
的方法調(diào)用上,cmd是通過 @command_manager_class
進(jìn)行裝飾的類,找到其裝飾的地方如下:
def initialize
@command_manager_class = Gem::CommandManager
@config_file_class = Gem::ConfigFile
end
發(fā)現(xiàn)是它其實(shí) Gem::CommandManager 類,接著查看一下 CommandManager 的 run 方法實(shí)現(xiàn),在文件 command_manager.rb 中 ,有以下的實(shí)現(xiàn)內(nèi)容:
##
# Run the command specified by +args+.
def run(args, build_args=nil)
process_args(args, build_args)
# 異常處理
rescue StandardError, Timeout::Error => ex
if ex.respond_to?(:detailed_message)
msg = ex.detailed_message(highlight: false).sub(/\A(.*?)(?: \(.+?\))/) { $1 }
else
msg = ex.message
end
alert_error clean_text("While executing gem ... (#{ex.class})\n #{msg}")
ui.backtrace ex
terminate_interaction(1)
rescue Interrupt
alert_error clean_text("Interrupted")
terminate_interaction(1)
end
def process_args(args, build_args=nil)
# 空參數(shù)退出執(zhí)行
if args.empty?
say Gem::Command::HELP
terminate_interaction 1
end
# 判斷第一個(gè)參數(shù)
case args.first
when "-h", "--help" then
say Gem::Command::HELP
terminate_interaction 0
when "-v", "--version" then
say Gem::VERSION
terminate_interaction 0
when "-C" then
args.shift
start_point = args.shift
if Dir.exist?(start_point)
Dir.chdir(start_point) { invoke_command(args, build_args) }
else
alert_error clean_text("#{start_point} isn't a directory.")
terminate_interaction 1
end
when /^-/ then
alert_error clean_text("Invalid option: #{args.first}. See 'gem --help'.")
terminate_interaction 1
else
# 執(zhí)行命令
invoke_command(args, build_args)
end
end
def invoke_command(args, build_args)
cmd_name = args.shift.downcase
# 查找指令,并獲取繼承自 Gem::Commands的實(shí)體子類(實(shí)現(xiàn)了excute抽象方法)
cmd = find_command cmd_name
cmd.deprecation_warning if cmd.deprecated?
# 執(zhí)行 invoke_with_build_args 方法(該方法來自基類 Gem::Commands)
cmd.invoke_with_build_args args, build_args
end
def find_command(cmd_name)
cmd_name = find_alias_command cmd_name
possibilities = find_command_possibilities cmd_name
if possibilities.size > 1
raise Gem::CommandLineError,
"Ambiguous command #{cmd_name} matches [#{possibilities.join(", ")}]"
elsif possibilities.empty?
raise Gem::UnknownCommandError.new(cmd_name)
end
# 這里的[] 是方法調(diào)用,定義在下面
self[possibilities.first]
end
##
# Returns a Command instance for +command_name+
def [](command_name)
command_name = command_name.intern
return nil if @commands[command_name].nil?
# 調(diào)用 `load_and_instantiate` 方法來完成這個(gè)過程,并將返回的對(duì)象存儲(chǔ)到 `@commands` 哈希表中,這里 ||= 是默認(rèn)值內(nèi)容,類似于OC中的?:
@commands[command_name] ||= load_and_instantiate(command_name)
end
# 命令分發(fā)選擇以及動(dòng)態(tài)實(shí)例
def load_and_instantiate(command_name)
command_name = command_name.to_s
const_name = command_name.capitalize.gsub(/_(.)/) { $1.upcase } << "Command"
load_error = nil
begin
begin
require "rubygems/commands/#{command_name}_command"
rescue LoadError => e
load_error = e
end
# 通過 Gem::Commands 獲取注冊(cè)的變量
Gem::Commands.const_get(const_name).new
rescue StandardError => e
e = load_error if load_error
alert_error clean_text("Loading command: #{command_name} (#{e.class})\n\t#{e}")
ui.backtrace e
end
end
通過以上的源碼,可以發(fā)現(xiàn)命令的執(zhí)行,通過調(diào)用 process_args
執(zhí)行,然后在 process_args
方法中進(jìn)行判斷命令參數(shù),接著通過 invoke_command
來執(zhí)行命令。在 invoke_command
內(nèi)部,首先通過find_command
查找命令,這里find_command
主要負(fù)責(zé)查找命令相關(guān)的執(zhí)行對(duì)象,需要注意的地方在以下這句:
@commands[command_name] ||= load_and_instantiate(command_name)
通過以上的操作,返回當(dāng)前命令執(zhí)行的實(shí)體對(duì)象,而對(duì)應(yīng)的腳本匹配又是如何實(shí)現(xiàn)的呢(比如輸入的命令是 gem install 命令)?這里的 load_and_instantiate(command_name)
的方法其實(shí)就是查找實(shí)體的具體操作,在實(shí)現(xiàn)中通過以下的語句來獲取最終的常量的命令指令實(shí)體:
Gem::Commands.const_get(const_name).new
上面的語句是通過 Gem::Commands
查找類中的常量,這里的常量其實(shí)就是對(duì)應(yīng)gem相關(guān)的一個(gè)個(gè)指令,在gem中聲明了很多命令的常量,他們繼承自 Gem::Command
基類,同時(shí)實(shí)現(xiàn)了抽象方法 execute
,這一點(diǎn)很重要。比如在 install_command.rb
中定義了命令 gem install
的具體的實(shí)現(xiàn):
def execute
if options.include? :gemdeps
install_from_gemdeps
return # not reached
end
@installed_specs = []
ENV.delete "GEM_PATH" if options[:install_dir].nil?
check_install_dir
check_version
load_hooks
exit_code = install_gems
show_installed
say update_suggestion if eglible_for_update?
terminate_interaction exit_code
end
在 invoke_command
方法中,最終通過 invoke_with_build_args
來最終執(zhí)行命令,該方法定義Gem::Command
中,在 command.rb
文件中,可以看到內(nèi)容如下:
def invoke_with_build_args(args, build_args)
handle_options args
options[:build_args] = build_args
if options[:silent]
old_ui = ui
self.ui = ui = Gem::SilentUI.new
end
if options[:help]
show_help
elsif @when_invoked
@when_invoked.call options
else
execute
end
ensure
if ui
self.ui = old_ui
ui.close
end
end
# 子類實(shí)現(xiàn)該抽象完成命令的具體實(shí)現(xiàn)
def execute
raise Gem::Exception, "generic command has no actions"
end
可以看出來,最終基類中的 invoke_with_build_args
中調(diào)用了抽象方法 execute
來完成命令的運(yùn)行調(diào)用。在rubyGems里面聲明了很多變量,這些變量在 CommandManager
中通過 run
方法進(jìn)行命令常量實(shí)體的查找,最終通過調(diào)用繼承自 Gem:Command
子類的 execute
完成相關(guān)指令的執(zhí)行。在rubyGems中可以看到很多變量,一個(gè)變量對(duì)應(yīng)一個(gè)命令,如下所示:
到這里,我們基本可以知道整個(gè)gem命令的查找到調(diào)用的整個(gè)流程。那么 gem install
的過程中又是如何自動(dòng)生成并注冊(cè)相關(guān)的gem命令到系統(tǒng)環(huán)境變量中的呢?基于上面的命令查找調(diào)用流程,其實(shí)只需要在 install_command.rb
中查看 execute
具體的實(shí)現(xiàn)就清楚了,如下:
def execute
if options.include? :gemdeps
install_from_gemdeps
return # not reached
end
@installed_specs = []
ENV.delete "GEM_PATH" if options[:install_dir].nil?
check_install_dir
check_version
load_hooks
exit_code = install_gems
show_installed
say update_suggestion if eglible_for_update?
terminate_interaction exit_code
end
def install_from_gemdeps # :nodoc:
require_relative "../request_set"
rs = Gem::RequestSet.new
specs = rs.install_from_gemdeps options do |req, inst|
s = req.full_spec
if inst
say "Installing #{s.name} (#{s.version})"
else
say "Using #{s.name} (#{s.version})"
end
end
@installed_specs = specs
terminate_interaction
end
def install_gem(name, version) # :nodoc:
return if options[:conservative] &&
!Gem::Dependency.new(name, version).matching_specs.empty?
req = Gem::Requirement.create(version)
dinst = Gem::DependencyInstaller.new options
request_set = dinst.resolve_dependencies name, req
if options[:explain]
say "Gems to install:"
request_set.sorted_requests.each do |activation_request|
say " #{activation_request.full_name}"
end
else
@installed_specs.concat request_set.install options
end
show_install_errors dinst.errors
end
def install_gems # :nodoc:
exit_code = 0
get_all_gem_names_and_versions.each do |gem_name, gem_version|
gem_version ||= options[:version]
domain = options[:domain]
domain = :local unless options[:suggest_alternate]
suppress_suggestions = (domain == :local)
begin
install_gem gem_name, gem_version
rescue Gem::InstallError => e
alert_error "Error installing #{gem_name}:\n\t#{e.message}"
exit_code |= 1
rescue Gem::GemNotFoundException => e
show_lookup_failure e.name, e.version, e.errors, suppress_suggestions
exit_code |= 2
rescue Gem::UnsatisfiableDependencyError => e
show_lookup_failure e.name, e.version, e.errors, suppress_suggestions,
"'#{gem_name}' (#{gem_version})"
exit_code |= 2
end
end
exit_code
end
可以看出,最終通過request_set.install
來完成最終的gem安裝,而request_set
是Gem::RequestSet
的實(shí)例對(duì)象,接著在 request_set.rb
中查看相關(guān)的實(shí)現(xiàn):
##
# Installs gems for this RequestSet using the Gem::Installer +options+.
#
# If a +block+ is given an activation +request+ and +installer+ are yielded.
# The +installer+ will be +nil+ if a gem matching the request was already
# installed.
def install(options, &block) # :yields: request, installer
if dir = options[:install_dir]
requests = install_into dir, false, options, &block
return requests
end
@prerelease = options[:prerelease]
requests = []
# 創(chuàng)建下載隊(duì)列
download_queue = Thread::Queue.new
# Create a thread-safe list of gems to download
sorted_requests.each do |req|
# 存儲(chǔ)下載實(shí)例
download_queue << req
end
# Create N threads in a pool, have them download all the gems
threads = Array.new(Gem.configuration.concurrent_downloads) do
# When a thread pops this item, it knows to stop running. The symbol
# is queued here so that there will be one symbol per thread.
download_queue << :stop
# 創(chuàng)建線程并執(zhí)行下載
Thread.new do
# The pop method will block waiting for items, so the only way
# to stop a thread from running is to provide a final item that
# means the thread should stop.
while req = download_queue.pop
break if req == :stop
req.spec.download options unless req.installed?
end
end
end
# 等待所有線程都執(zhí)行完畢,也就是gem下載完成
threads.each(&:value)
# 開始安裝已經(jīng)下載的gem
sorted_requests.each do |req|
if req.installed?
req.spec.spec.build_extensions
if @always_install.none? {|spec| spec == req.spec.spec }
yield req, nil if block_given?
next
end
end
spec =
begin
req.spec.install options do |installer|
yield req, installer if block_given?
end
rescue Gem::RuntimeRequirementNotMetError => e
suggestion = "There are no versions of #{req.request} compatible with your Ruby & RubyGems"
suggestion += ". Maybe try installing an older version of the gem you're looking for?" unless @always_install.include?(req.spec.spec)
e.suggestion = suggestion
raise
end
requests << spec
end
return requests if options[:gemdeps]
install_hooks requests, options
requests
end
可以發(fā)現(xiàn),整個(gè)過程先是執(zhí)行完被加在隊(duì)列中的所有的線程任務(wù),然后通過遍歷下載的實(shí)例對(duì)象,對(duì)下載的gem進(jìn)行安裝,通過 req.sepc.install options
進(jìn)行安裝,這塊的實(shí)現(xiàn)在 specification.rb
中的 Gem::Resolver::Specification
定義如下:
def install(options = {})
require_relative "../installer"
# 獲取下載的gem
gem = download options
# 獲取安裝實(shí)例
installer = Gem::Installer.at gem, options
# 回調(diào)輸出
yield installer if block_given?
# 執(zhí)行安裝
@spec = installer.install
end
def download(options)
dir = options[:install_dir] || Gem.dir
Gem.ensure_gem_subdirectories dir
source.download spec, dir
end
從上面的源碼可以知道,最終安裝放在了 Gem::Installer
的 install
方法中執(zhí)行的。它的執(zhí)行過程如下:
def install
# 安裝檢查
pre_install_checks
# 運(yùn)行執(zhí)行前腳本hook
run_pre_install_hooks
# Set loaded_from to ensure extension_dir is correct
if @options[:install_as_default]
spec.loaded_from = default_spec_file
else
spec.loaded_from = spec_file
end
# Completely remove any previous gem files
FileUtils.rm_rf gem_dir
FileUtils.rm_rf spec.extension_dir
dir_mode = options[:dir_mode]
FileUtils.mkdir_p gem_dir, :mode => dir_mode && 0o755
# 默認(rèn)設(shè)置安裝
if @options[:install_as_default]
extract_bin
write_default_spec
else
extract_files
build_extensions
write_build_info_file
run_post_build_hooks
end
# 生成bin目錄可執(zhí)行文件
generate_bin
# 生成插件
generate_plugins
unless @options[:install_as_default]
write_spec
write_cache_file
end
File.chmod(dir_mode, gem_dir) if dir_mode
say spec.post_install_message if options[:post_install_message] && !spec.post_install_message.nil?
Gem::Specification.add_spec(spec)
# 運(yùn)行install的hook腳本
run_post_install_hooks
spec
這段源碼中,我們清晰的看到在執(zhí)行安裝的整個(gè)過程之后,又通過 generate_bin
與generate_plugins
動(dòng)態(tài)生成了兩個(gè)文件,對(duì)于 generate_bin
的生成過程如下:
def generate_bin # :nodoc:
return if spec.executables.nil? || spec.executables.empty?
ensure_writable_dir @bin_dir
spec.executables.each do |filename|
filename.tap(&Gem::UNTAINT)
bin_path = File.join gem_dir, spec.bindir, filename
next unless File.exist? bin_path
mode = File.stat(bin_path).mode
dir_mode = options[:prog_mode] || (mode | 0o111)
unless dir_mode == mode
require "fileutils"
FileUtils.chmod dir_mode, bin_path
end
# 檢查是否存在同名文件被復(fù)寫
check_executable_overwrite filename
if @wrappers
# 生成可執(zhí)行腳本
generate_bin_script filename, @bin_dir
else
# 生成符號(hào)鏈接
generate_bin_symlink filename, @bin_dir
end
end
end
在經(jīng)過一系列的路徑判斷與寫入環(huán)境判斷之后,通過 generate_bin_script
生成動(dòng)態(tài)可執(zhí)行腳本文件,到這里,是不是對(duì)關(guān)于gem進(jìn)行安裝的時(shí)候動(dòng)態(tài)生成系統(tǒng)可識(shí)別的命令指令有了清晰的認(rèn)識(shí)與解答。其實(shí)本質(zhì)是Ruby在安裝gem之后,會(huì)通過 generate_bin_script
生成可執(zhí)行腳本并動(dòng)態(tài)注入到系統(tǒng)的環(huán)境變量中,進(jìn)而能夠讓系統(tǒng)識(shí)別到gem安裝的相關(guān)指令,為gem的功能觸發(fā)提供入口。以下是generate_bin_script
的實(shí)現(xiàn):
##
# Creates the scripts to run the applications in the gem.
#--
# The Windows script is generated in addition to the regular one due to a
# bug or misfeature in the Windows shell's pipe. See
# https://blade.ruby-lang.org/ruby-talk/193379
def generate_bin_script(filename, bindir)
bin_script_path = File.join bindir, formatted_program_filename(filename)
require "fileutils"
FileUtils.rm_f bin_script_path # prior install may have been --no-wrappers
File.open bin_script_path, "wb", 0o755 do |file|
file.print app_script_text(filename)
file.chmod(options[:prog_mode] || 0o755)
end
verbose bin_script_path
generate_windows_script filename, bindir
end
關(guān)于腳本具體內(nèi)容的生成,這里就不再細(xì)說了,感興趣的話可以去官方的源碼中的installer.rb
中查看細(xì)節(jié),摘取了主要內(nèi)容如下:
def app_script_text(bin_file_name)
# NOTE: that the `load` lines cannot be indented, as old RG versions match
# against the beginning of the line
<<-TEXT
#{shebang bin_file_name}
#
# This file was generated by RubyGems.
#
# The application '#{spec.name}' is installed as part of a gem, and
# this file is here to facilitate running it.
#
require 'rubygems'
#{gemdeps_load(spec.name)}
version = "#{Gem::Requirement.default_prerelease}"
str = ARGV.first
if str
str = str.b[/\\A_(.*)_\\z/, 1]
if str and Gem::Version.correct?(str)
#{explicit_version_requirement(spec.name)}
ARGV.shift
end
end
if Gem.respond_to?(:activate_bin_path)
load Gem.activate_bin_path('#{spec.name}', '#{bin_file_name}', version)
else
gem #{spec.name.dump}, version
load Gem.bin_path(#{spec.name.dump}, #{bin_file_name.dump}, version)
end
TEXT
end
def gemdeps_load(name)
return "" if name == "bundler"
<<-TEXT
Gem.use_gemdeps
TEXT
end
小結(jié)一下:之所以系統(tǒng)能夠識(shí)別我們安裝的gems包命令,本質(zhì)原因是RubyGems在進(jìn)行包安裝的時(shí)候,通過 generate_bin_script 動(dòng)態(tài)的生成了可執(zhí)行的腳本文件,并將其注入到了系統(tǒng)的環(huán)境變量路徑Path中。我們通過系統(tǒng)的環(huán)境變量作為引導(dǎo)入口,再間接的調(diào)取gem安裝包的具體實(shí)現(xiàn),進(jìn)而完成整個(gè)gem的功能調(diào)用。
三、CocoaPods是如何在Ruby的基礎(chǔ)上都做了自己的領(lǐng)域型DSL?
想想日常使用cocoaPods引入三方組件的時(shí)候,通常都在Podfile中進(jìn)行相關(guān)的配置就行了,而在Podfile中的配置規(guī)則其實(shí)就是Cocoapods在Ruby的基礎(chǔ)上提供給開發(fā)者的領(lǐng)域型DSL,該DSL主要針對(duì)與項(xiàng)目的依賴庫管理進(jìn)行領(lǐng)域規(guī)則描述,由CocoaPods的DSL解析器完成規(guī)則解析,最終通過pods的相關(guān)命令來完成整個(gè)項(xiàng)目的庫的日常管理。這么說沒有什么問題,但是Cocoapods的底層邏輯到底是什么?也是接下來想重點(diǎn)探討挖掘的。
繼續(xù)從簡(jiǎn)單 pod install
命令來一探究竟,通過第一節(jié)的源碼分析,我們知道,該命令最終會(huì)轉(zhuǎn)發(fā)到 cocoaPods
源碼下的 install.rb
中,直接看它的 run
方法,如下:
class Install < Command
···
def run
# 是否存在podfile文件
verify_podfile_exists!
# 創(chuàng)建installer對(duì)象(installer_for_config定義在基類Command中)
installer = installer_for_config
# 更新倉庫
installer.repo_update = repo_update?(:default => false)
# 關(guān)閉更新
installer.update = false
# 屬性透?jìng)? installer.deployment = @deployment
installer.clean_install = @clean_install
# 執(zhí)行安裝
installer.install!
end
def installer_for_config
Installer.new(config.sandbox, config.podfile, config.lockfile)
end
···
end
執(zhí)行安裝的操作是通過 installer_for_config
方法來完成的,在方法實(shí)現(xiàn)中,實(shí)例了 Installer
對(duì)象,入?yún)?sandbox
、podfile
、lockfile
,而這些入?yún)⒕峭ㄟ^ config
對(duì)象方法獲取,而podfile的獲取過程正是我們想要了解的,所以知道 config
的定義地方至關(guān)重要。在 command.rb
中我發(fā)現(xiàn)有如下的內(nèi)容:
include Config::Mixin
這段代碼引入了 Config::Mixin
類,而他在 Config
中的定義如下:
class Config
···
module Mixin
def config
Config.instance
end
end
def self.instance
@instance ||= new
end
def sandbox
@sandbox ||= Sandbox.new(sandbox_root)
end
def podfile
@podfile ||= Podfile.from_file(podfile_path) if podfile_path
end
attr_writer :podfile
def lockfile
@lockfile ||= Lockfile.from_file(lockfile_path) if lockfile_path
end
def podfile_path
@podfile_path ||= podfile_path_in_dir(installation_root)
end
···
end
定義了一個(gè)名為Mixin
的模塊,其中包含一個(gè)名為config
的方法,在該方法中實(shí)例了 Config
對(duì)象。這里定義了剛剛實(shí)例 Installer
的時(shí)候的三個(gè)入?yún)?。重點(diǎn)看一下 podfile
,可以看出 podfile
的實(shí)現(xiàn)中通過 Podfile.from_file(podfile_path)
來拿到最終的配置內(nèi)容,那么關(guān)于Podfile
的讀取謎底也就在這個(gè) from_file
方法實(shí)現(xiàn)中了,通過搜索發(fā)現(xiàn)在Cocoapods
中的源碼中并沒有該方法的定義,只有以下的內(nèi)容:
require 'cocoapods-core/podfile'
module Pod
class Podfile
autoload :InstallationOptions, 'cocoapods/installer/installation_options'
# @return [Pod::Installer::InstallationOptions] the installation options specified in the Podfile
#
def installation_options
@installation_options ||= Pod::Installer::InstallationOptions.from_podfile(self)
end
end
end
可以看到這里的class Podfile
定義的Podfile
的原始類,同時(shí)發(fā)現(xiàn)源碼中引用了 cocoapods-core/podfile
文件,這里應(yīng)該能猜想到,關(guān)于 from_file
的實(shí)現(xiàn)應(yīng)該是在cocoapods-core/podfile
中完成的。這個(gè)資源引入是 Cocoapods
的一個(gè)核心庫的組件,通過對(duì)核心庫 cocoapods-core
,進(jìn)行檢索,發(fā)現(xiàn)在文件 podfile.rb
中有如下的內(nèi)容:
module Pod
class Podfile
# @!group DSL support
include Pod::Podfile::DSL
···
def self.from_file(path)
path = Pathname.new(path)
# 路徑是否有效
unless path.exist?
raise Informative, "No Podfile exists at path `#{path}`."
end
# 判斷擴(kuò)展名文件
case path.extname
when '', '.podfile', '.rb'
# 按照Ruby格式解析
Podfile.from_ruby(path)
when '.yaml'
# 按照yaml格式進(jìn)行解析
Podfile.from_yaml(path)
else
# 格式異常拋出
raise Informative, "Unsupported Podfile format `#{path}`."
end
end
def self.from_ruby(path, contents = nil)
# 以u(píng)tf-8格式打開文件內(nèi)容
contents ||= File.open(path, 'r:utf-8', &:read)
# Work around for Rubinius incomplete encoding in 1.9 mode
if contents.respond_to?(:encoding) && contents.encoding.name != 'UTF-8'
contents.encode!('UTF-8')
end
if contents.tr!('“”‘’?', %(""'''))
# Changes have been made
CoreUI.warn "Smart quotes were detected and ignored in your #{path.basename}. " \
'To avoid issues in the future, you should not use ' \
'TextEdit for editing it. If you are not using TextEdit, ' \
'you should turn off smart quotes in your editor of choice.'
end
# 實(shí)例podfile對(duì)象
podfile = Podfile.new(path) do
# rubocop:disable Lint/RescueException
begin
# 執(zhí)行podFile內(nèi)容(執(zhí)行之前會(huì)先執(zhí)行Podfile初始化Block回調(diào)前的內(nèi)容)
eval(contents, nil, path.to_s)
# DSL的異常拋出
rescue Exception => e
message = "Invalid `#{path.basename}` file: #{e.message}"
raise DSLError.new(message, path, e, contents)
end
# rubocop:enable Lint/RescueException
end
podfile
end
def self.from_yaml(path)
string = File.open(path, 'r:utf-8', &:read)
# Work around for Rubinius incomplete encoding in 1.9 mode
if string.respond_to?(:encoding) && string.encoding.name != 'UTF-8'
string.encode!('UTF-8')
end
hash = YAMLHelper.load_string(string)
from_hash(hash, path)
end
def initialize(defined_in_file = nil, internal_hash = {}, &block)
self.defined_in_file = defined_in_file
@internal_hash = internal_hash
if block
default_target_def = TargetDefinition.new('Pods', self)
default_target_def.abstract = true
@root_target_definitions = [default_target_def]
@current_target_definition = default_target_def
instance_eval(&block)
else
@root_target_definitions = []
end
end
從上面的源碼可以知道,整個(gè)的 Podfile
的讀取流程如下: 1. 判斷路徑是否合法,不合法拋出異常 2. 判斷擴(kuò)展名類型,如果是 '', '.podfile', '.rb' 擴(kuò)展按照 ruby
語法規(guī)則解析,如果是yaml
則按照 yaml
文件格式解析,以上兩者如果都不是,則拋出格式解析異常 3. 如果解析按照 Ruby
格式解析的話過程如下:
? 按照utf-8
格式讀取 Podfile
文件內(nèi)容,并存儲(chǔ)到 contents
中
? 內(nèi)容符號(hào)容錯(cuò)處理,主要涉及" “”‘’?" 等 符號(hào),同時(shí)輸出警告信息
? 實(shí)例 Podfile
對(duì)象,同時(shí)在實(shí)例過程中初始化 TargetDefinition
對(duì)象并配置默認(rèn)的Target
信息
? 最終通過 eval(contents, nil, path.to_s)
方法執(zhí)行 Podfile
文件內(nèi)容完成配置記錄
這里或許有一個(gè)疑問:Podfile里面定義了 Cocoapods
自己的一套DSL語法
,那么執(zhí)行過程中是如何解析DSL語法
的呢?上面的源碼文件中,如果仔細(xì)查看的話,會(huì)發(fā)現(xiàn)有下面這一行內(nèi)容:
include Pod::Podfile::DSL
不錯(cuò),這就是DSL解析
的本體,其實(shí)你可以將DSL語法
理解為基于Ruby
定義的一系列的領(lǐng)域型方法,DSL的解析的過程本質(zhì)是定義的方法執(zhí)行的過程
。在Cocoapods
中定義了很多DSL語法
,定義與實(shí)現(xiàn)均放在了 cocoapods-core
這個(gè)核心組件中,比如在dsl.rb
文件中的以下關(guān)于Podfile
的 DSL
定義(摘取部分):
module Pod
class Podfile
module DSL
def install!(installation_method, options = {})
unless current_target_definition.root?
raise Informative, 'The installation method can only be set at the root level of the Podfile.'
end
set_hash_value('installation_method', 'name' => installation_method, 'options' => options)
end
def pod(name = nil, *requirements)
unless name
raise StandardError, 'A dependency requires a name.'
end
current_target_definition.store_pod(name, *requirements)
end
def podspec(options = nil)
current_target_definition.store_podspec(options)
end
def target(name, options = nil)
if options
raise Informative, "Unsupported options `#{options}` for " \
"target `#{name}`."
end
parent = current_target_definition
definition = TargetDefinition.new(name, parent)
self.current_target_definition = definition
yield if block_given?
ensure
self.current_target_definition = parent
end
def inherit!(inheritance)
current_target_definition.inheritance = inheritance
end
def platform(name, target = nil)
# Support for deprecated options parameter
target = target[:deployment_target] if target.is_a?(Hash)
current_target_definition.set_platform!(name, target)
end
def project(path, build_configurations = {})
current_target_definition.user_project_path = path
current_target_definition.build_configurations = build_configurations
end
def xcodeproj(*args)
CoreUI.warn '`xcodeproj` was renamed to `project`. Please update your Podfile accordingly.'
project(*args)
end
.......
end
end
看完 DSL的定義實(shí)現(xiàn)
是不是有種熟悉的味道,對(duì)于使用Cocoapods
的使用者而言,在沒有接觸Ruby
的情況下,依舊能夠通過對(duì)Podfile
的簡(jiǎn)單配置來實(shí)現(xiàn)三方庫的管理依賴,不僅使用的學(xué)習(xí)成本低,而且能夠很容易的上手,之所以能夠這么便捷,就體現(xiàn)出了DSL
的魅力所在。
對(duì)于**領(lǐng)域型語言**
的方案選用在很多不同的業(yè)務(wù)領(lǐng)域中都有了相關(guān)的應(yīng)用,它對(duì)特定的**業(yè)務(wù)領(lǐng)域場(chǎng)景**
能夠提供**高效簡(jiǎn)潔**
的實(shí)現(xiàn)方案,對(duì)使用者友好的同時(shí),也能提供高質(zhì)量的領(lǐng)域能力。**cocoapods**
就是借助Ruby強(qiáng)大的面向?qū)ο蟮哪_本能力完成**Cocoa庫**
管理的實(shí)現(xiàn),有種偷梁換柱的感覺,為使用者提供了領(lǐng)域性語言,讓其更簡(jiǎn)單更高效,尤其是使用者并沒有感知到其本質(zhì)是**Ruby**
。記得一開始使用Cocoapods
的時(shí)候,曾經(jīng)一度以為它是一種新的語言,現(xiàn)在看來都是Cocoapods的DSL
所給我們的錯(cuò)覺,畢竟使用起來實(shí)在是太香了。
作者:京東零售 李臣臣文章來源:http://www.zghlxwxcb.cn/news/detail-709980.html
來源:京東云開發(fā)者社區(qū) 轉(zhuǎn)載請(qǐng)注明來源文章來源地址http://www.zghlxwxcb.cn/news/detail-709980.html
到了這里,關(guān)于CocoaPods 在iOS開發(fā)中養(yǎng)活了這么多項(xiàng)目,它到底是個(gè)啥?的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!