官方網(wǎng)址:https://ververica.github.io/flink-cdc-connectors/release-2.3/content/%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8B/mysql-postgres-tutorial-zh.html官方教程有些坑,經(jīng)過自己實測,記錄個筆記。
服務(wù)器環(huán)境:
VM虛擬機:CentOS7.9
docker版本:Docker version 24.0.5, build ced0996
docker compose 版本:2.19
jdk 1.8
虛擬機IP:192.168.122.131?
內(nèi)存:16G(一定要大于等于16G)
CPU:4g
磁盤 :>= 60G
一、docker? compose安裝
DOCKER_CONFIG=${DOCKER_CONFIG:-/usr/local/lib/docker/cli-plugins}
mkdir -p $DOCKER_CONFIG/cli-plugins
curl -SL https://github.com/docker/compose/releases/download/v2.19.1/docker-compose-linux-x86_64 -o $DOCKER_CONFIG/cli-plugins/docker-compose
對文件應(yīng)用可執(zhí)行權(quán)限:
chmod +x $DOCKER_CONFIG/cli-plugins/docker-compose
測試安裝是否成功
docker compose version #之前的v1版本命令是docker-compose --version
參考:https://blog.csdn.net/qq_40099908/article/details/131611496
二、實戰(zhàn)
這篇教程將展示如何基于 Flink CDC 快速構(gòu)建 MySQL 和 Postgres 的流式 ETL。本教程的演示都將在 Flink SQL CLI 中進行,只涉及 SQL,無需一行 Java/Scala 代碼,也無需安裝 IDE。
假設(shè)我們正在經(jīng)營電子商務(wù)業(yè)務(wù),商品和訂單的數(shù)據(jù)存儲在 MySQL 中,訂單對應(yīng)的物流信息存儲在 Postgres 中。 對于訂單表,為了方便進行分析,我們希望讓它關(guān)聯(lián)上其對應(yīng)的商品和物流信息,構(gòu)成一張寬表,并且實時把它寫到 ElasticSearch 中。
接下來的內(nèi)容將介紹如何使用 Flink Mysql/Postgres CDC 來實現(xiàn)這個需求,系統(tǒng)的整體架構(gòu)如下圖所示:
1、準備教程所需要的組件
接下來的教程將以?docker-compose
?的方式準備所需要的組件。
使用下面的內(nèi)容創(chuàng)建一個?docker-compose.yml
?文件:
version: '2.1'
services:
postgres:
image: debezium/example-postgres:1.1
ports:
- "5432:5432"
environment:
- POSTGRES_DB=postgres
- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
mysql:
image: debezium/example-mysql:1.1
ports:
- "3306:3306"
environment:
- MYSQL_ROOT_PASSWORD=123456
- MYSQL_USER=mysqluser
- MYSQL_PASSWORD=mysqlpw
elasticsearch:
image: elastic/elasticsearch:7.6.0
environment:
- cluster.name=docker-cluster
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
- discovery.type=single-node
ports:
- "9200:9200"
- "9300:9300"
ulimits:
memlock:
soft: -1
hard: -1
nofile:
soft: 65536
hard: 65536
kibana:
image: elastic/kibana:7.6.0
ports:
- "5601:5601"
該 Docker Compose 中包含的容器有:
-
MySQL: 商品表?
products
?和 訂單表?orders
?將存儲在該數(shù)據(jù)庫中, 這兩張表將和 Postgres 數(shù)據(jù)庫中的物流表?shipments
進行關(guān)聯(lián),得到一張包含更多信息的訂單表?enriched_orders
-
Postgres: 物流表?
shipments
?將存儲在該數(shù)據(jù)庫中 -
Elasticsearch: 最終的訂單表?
enriched_orders
?將寫到 Elasticsearch -
Kibana: 用來可視化 ElasticSearch 的數(shù)據(jù)
在?docker-compose.yml
?所在目錄下執(zhí)行下面的命令來啟動本教程需要的組件:
docker compose up -d
該命令將以 detached 模式自動啟動 Docker Compose 配置中定義的所有容器。你可以通過 docker ps 來觀察上述的容器是否正常啟動了,也可以通過訪問?http://192.168.122.131:5601來查看 Kibana 是否運行正常。
2、下載 Flink 和所需要的依賴包
下載?Flink 1.16.0?并將其解壓至目錄?flink-1.16.0
? ,
下載下面列出的依賴包,并將它們放到目錄?flink-1.16.0/lib/
?下:
-
下載鏈接只對已發(fā)布的版本有效, SNAPSHOT 版本需要本地編譯
-
flink-sql-connector-elasticsearch7-1.16.0.jar
-
flink-sql-connector-mysql-cdc-2.3.0.jar
-
flink-sql-connector-postgres-cdc-2.3.0.jar
-
準備數(shù)據(jù)
在 MySQL 數(shù)據(jù)庫中準備數(shù)據(jù)
進入 MySQL 容器
docker compose exec mysql mysql -uroot -p123456
創(chuàng)建數(shù)據(jù)庫和表?products
,orders
,并插入數(shù)據(jù)
-- MySQL
CREATE DATABASE mydb;
USE mydb;
CREATE TABLE products (
id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(255) NOT NULL,
description VARCHAR(512)
);
ALTER TABLE products AUTO_INCREMENT = 101;
INSERT INTO products
VALUES (default,"scooter","Small 2-wheel scooter"),
(default,"car battery","12V car battery"),
(default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
(default,"hammer","12oz carpenter's hammer"),
(default,"hammer","14oz carpenter's hammer"),
(default,"hammer","16oz carpenter's hammer"),
(default,"rocks","box of assorted rocks"),
(default,"jacket","water resistent black wind breaker"),
(default,"spare tire","24 inch spare tire");
CREATE TABLE orders (
order_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
order_date DATETIME NOT NULL,
customer_name VARCHAR(255) NOT NULL,
price DECIMAL(10, 5) NOT NULL,
product_id INTEGER NOT NULL,
order_status BOOLEAN NOT NULL -- Whether order has been placed
) AUTO_INCREMENT = 10001;
INSERT INTO orders
VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false),
(default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false),
(default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false);
注意:mysql會遇到時區(qū)不對的情況。
在mysql容器調(diào)整時區(qū):
set time_zone='+8:00';
SET GLOBAL time_zone = '+8:00';
flush privileges;
SELECT @@global.time_zone;
show variables like '%time_zone%';
在 Postgres 數(shù)據(jù)庫中準備數(shù)據(jù)
進入 Postgres 容器
docker compose exec postgres psql -h localhost -U postgres
創(chuàng)建表?shipments
,并插入數(shù)據(jù)
-- PG
CREATE TABLE shipments (
shipment_id SERIAL NOT NULL PRIMARY KEY,
order_id SERIAL NOT NULL,
origin VARCHAR(255) NOT NULL,
destination VARCHAR(255) NOT NULL,
is_arrived BOOLEAN NOT NULL
);
ALTER SEQUENCE public.shipments_shipment_id_seq RESTART WITH 1001;
ALTER TABLE public.shipments REPLICA IDENTITY FULL;
INSERT INTO shipments
VALUES (default,10001,'Beijing','Shanghai',false),
(default,10002,'Hangzhou','Shanghai',false),
(default,10003,'Shanghai','Hangzhou',false);
啟動 Flink 集群和 Flink SQL CLI
使用下面的命令跳轉(zhuǎn)至 Flink 目錄下
cd flink-1.16.0
使用下面的命令啟動 Flink 集群
./bin/start-cluster.sh
啟動成功的話,可以在?http://192.168.122.131:8081/?訪問到 Flink Web UI,如下所示:
注:若在VM之外的本地的電腦里無法訪問,則需要調(diào)整 /flink-1.16.0/conf/flink-conf.yaml文件,
將rest.bind-address值改為:0.0.0.0
開放單個端口(開放后需要要重啟防火墻才生效) ;
firewall-cmd --zone=public --add-port=8081/tcp --permanent
重啟防火墻 ;?systemctl restart firewalld
? 另:還有個參數(shù)taskmanager.numberOfTaskSlots: 50,一般設(shè)置大一些的值,比如50。
使用下面的命令啟動 Flink SQL CLI
./bin/sql-client.sh
啟動成功后,可以看到如下的頁面:
在 Flink SQL CLI 中使用 Flink DDL 創(chuàng)建表
首先,開啟 checkpoint,每隔3秒做一次 checkpoint
-- Flink SQL
Flink SQL> SET execution.checkpointing.interval = 3s;
然后, 對于數(shù)據(jù)庫中的表?products
,?orders
,?shipments
, 使用 Flink SQL CLI 創(chuàng)建對應(yīng)的表,用于同步這些底層數(shù)據(jù)庫表的數(shù)據(jù)
-- Flink SQL
Flink SQL> CREATE TABLE products (
id INT,
name STRING,
description STRING,
PRIMARY KEY (id) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'localhost',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'database-name' = 'mydb',
'table-name' = 'products'
);
Flink SQL> CREATE TABLE orders (
order_id INT,
order_date TIMESTAMP(0),
customer_name STRING,
price DECIMAL(10, 5),
product_id INT,
order_status BOOLEAN,
PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = 'localhost',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'database-name' = 'mydb',
'table-name' = 'orders'
);
Flink SQL> CREATE TABLE shipments (
shipment_id INT,
order_id INT,
origin STRING,
destination STRING,
is_arrived BOOLEAN,
PRIMARY KEY (shipment_id) NOT ENFORCED
) WITH (
'connector' = 'postgres-cdc',
'hostname' = 'localhost',
'port' = '5432',
'username' = 'postgres',
'password' = 'postgres',
'database-name' = 'postgres',
'schema-name' = 'public',
'table-name' = 'shipments'
);
最后,創(chuàng)建?enriched_orders
?表, 用來將關(guān)聯(lián)后的訂單數(shù)據(jù)寫入 Elasticsearch 中
-- Flink SQL
Flink SQL> CREATE TABLE enriched_orders (
order_id INT,
order_date TIMESTAMP(0),
customer_name STRING,
price DECIMAL(10, 5),
product_id INT,
order_status BOOLEAN,
product_name STRING,
product_description STRING,
shipment_id INT,
origin STRING,
destination STRING,
is_arrived BOOLEAN,
PRIMARY KEY (order_id) NOT ENFORCED
) WITH (
'connector' = 'elasticsearch-7',
'hosts' = 'http://localhost:9200',
'index' = 'enriched_orders'
);
關(guān)聯(lián)訂單數(shù)據(jù)并且將其寫入 Elasticsearch 中
使用 Flink SQL 將訂單表?order
?與 商品表?products
,物流信息表?shipments
?關(guān)聯(lián),并將關(guān)聯(lián)后的訂單信息寫入 Elasticsearch 中
-- Flink SQL
Flink SQL> INSERT INTO enriched_orders
SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived
FROM orders AS o
LEFT JOIN products AS p ON o.product_id = p.id
LEFT JOIN shipments AS s ON o.order_id = s.order_id;
現(xiàn)在,就可以在 Kibana 中看到包含商品和物流信息的訂單數(shù)據(jù)。
首先訪問 http://192.168.122.131:5601/app/kibana#/management/kibana/index_pattern 創(chuàng)建 index pattern enriched_orders.
然后就可以在 http://192.168.122.131:5601/app/kibana#/discover 看到寫入的數(shù)據(jù)了.
接下來,修改 MySQL 和 Postgres 數(shù)據(jù)庫中表的數(shù)據(jù),Kibana中顯示的訂單數(shù)據(jù)也將實時更新:
在 MySQL 的?orders
?表中插入一條數(shù)據(jù)
--MySQL
INSERT INTO orders
VALUES (default, '2020-07-30 15:22:00', 'Jark', 29.71, 104, false);
在 Postgres 的?shipment
?表中插入一條數(shù)據(jù)
--PG
INSERT INTO shipments
VALUES (default,10004,'Shanghai','Beijing',false);
在 MySQL 的?orders
?表中更新訂單的狀態(tài)
--MySQL
UPDATE orders SET order_status = true WHERE order_id = 10004;
在 Postgres 的?shipment
?表中更新物流的狀態(tài)
--PG
UPDATE shipments SET is_arrived = true WHERE shipment_id = 1004;
在 MYSQL 的?orders
?表中刪除一條數(shù)據(jù)
--MySQL
DELETE FROM orders WHERE order_id = 10004;
每執(zhí)行一步就刷新一次 Kibana,可以看到 Kibana 中顯示的訂單數(shù)據(jù)將實時更新,如下所示:
環(huán)境清理
本教程結(jié)束后,在?docker-compose.yml
?文件所在的目錄下執(zhí)行如下命令停止所有容器:
docker compose down
在 Flink 所在目錄?flink-1.16.0
?下執(zhí)行如下命令停止 Flink 集群:
./bin/stop-cluster.sh
異常排查
若數(shù)據(jù)異常,在flink的網(wǎng)頁里看查看錯誤信息。
http://192.168.122.131:8081/#/job/running文章來源:http://www.zghlxwxcb.cn/news/detail-702940.html
文章來源地址http://www.zghlxwxcb.cn/news/detail-702940.html
到了這里,關(guān)于基于 Flink CDC 構(gòu)建 MySQL 和 Postgres 的 Streaming ETL的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!