這篇教程將展示如何基于 Flink CDC 快速構(gòu)建 MySQL 到 Databend 的實(shí)時(shí)數(shù)據(jù)同步。本教程的演示都將在 Flink SQL CLI 中進(jìn)行,只涉及 SQL,無(wú)需一行 Java/Scala 代碼,也無(wú)需安裝 IDE。
假設(shè)我們有電子商務(wù)業(yè)務(wù),商品的數(shù)據(jù)存儲(chǔ)在 MySQL ,我們需要實(shí)時(shí)把它同步到 Databend 中。
接下來(lái)的內(nèi)容將介紹如何使用 Flink Mysql/Databend CDC 來(lái)實(shí)現(xiàn)這個(gè)需求,系統(tǒng)的整體架構(gòu)如下圖所示:
準(zhǔn)備階段
準(zhǔn)備一臺(tái)已經(jīng)安裝了 Docker 和 docker-compose 的 Linux 或者 MacOS 。
準(zhǔn)備教程所需要的組件
接下來(lái)的教程將以?docker-compose
?的方式準(zhǔn)備所需要的組件。
debezium-MySQL
docker-compose.yaml
version: '2.1'
services:
postgres:
image: debezium/example-postgres:1.1
ports:
- "5432:5432"
environment:
- POSTGRES_DB=postgres
- POSTGRES_USER=postgres
- POSTGRES_PASSWORD=postgres
mysql:
image: debezium/example-mysql:1.1
ports:
- "3306:3306"
environment:
- MYSQL_ROOT_PASSWORD=123456
- MYSQL_USER=mysqluser
- MYSQL_PASSWORD=mysqlpw
Databend
docker-compose.yaml
version: '3'
services:
databend:
image: datafuselabs/databend
volumes:
- /Users/hanshanjie/databend/local-test/databend/databend-query.toml:/etc/databend/query.toml
environment:
QUERY_DEFAULT_USER: databend
QUERY_DEFAULT_PASSWORD: databend
MINIO_ENABLED: 'true'
ports:
- '8000:8000'
- '9000:9000'
- '3307:3307'
- '8124:8124'
在?docker-compose.yml
?所在目錄下執(zhí)行下面的命令來(lái)啟動(dòng)本教程需要的組件:
ocker-compose up -d
該命令將以 detached 模式自動(dòng)啟動(dòng) Docker Compose 配置中定義的所有容器。你可以通過(guò) docker ps 來(lái)觀察上述的容器是否正常啟動(dòng)。
下載?Flink?和所需要的依賴包
-
下載?Flink 1.16.0?并將其解壓至目錄?
flink-1.16.0
-
下載下面列出的依賴包,并將它們放到目錄?
flink-1.16.0/lib/
?下: -
下載鏈接只對(duì)已發(fā)布的版本有效, SNAPSHOT 版本需要本地編譯
- flink-sql-connector-mysql-cdc-2.3.0.jar
編譯 flink-connector-databend
git clone https://github.com/databendcloud/flink-connector-databend
cd flink-connector-databend
mvn clean install -DskipTests
將 target/flink-connector-databend-1.16.0-SNAPSHOT.jar 拷貝到目錄?flink-1.16.0/lib/
?下。
準(zhǔn)備數(shù)據(jù)
在?MySQL?數(shù)據(jù)庫(kù)中準(zhǔn)備數(shù)據(jù)
進(jìn)入 MySQL 容器
docker-compose exec mysql mysql -uroot -p123456
創(chuàng)建數(shù)據(jù)庫(kù) mydb 和表?products
,并插入數(shù)據(jù):
CREATE DATABASE mydb;
USE mydb;
CREATE TABLE products (id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,name VARCHAR(255) NOT NULL,description VARCHAR(512));
ALTER TABLE products AUTO_INCREMENT = 10;
INSERT INTO products VALUES (default,"scooter","Small 2-wheel scooter"),
(default,"car battery","12V car battery"),
(default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
(default,"hammer","12oz carpenter's hammer"),
(default,"hammer","14oz carpenter's hammer"),
(default,"hammer","16oz carpenter's hammer"),
(default,"rocks","box of assorted rocks"),
(default,"jacket","water resistent black wind breaker"),
(default,"cloud","test for databend"),
(default,"spare tire","24 inch spare tire");
Databend 中建表
CREATE TABLE bend_products (id INT NOT NULL, name VARCHAR(255) NOT NULL, description VARCHAR(512) );
啟動(dòng)?Flink?集群和 Flink SQL?CLI
使用下面的命令跳轉(zhuǎn)至 Flink 目錄下
cd flink-16.0
使用下面的命令啟動(dòng) Flink 集群
./bin/start-cluster.sh
啟動(dòng)成功的話,可以在?http://localhost:8081/?訪問到 Flink Web UI,如下所示:
使用下面的命令啟動(dòng) Flink SQL CLI
./bin/sql-client.sh
在?Flink?SQL?CLI?中使用 Flink?DDL?創(chuàng)建表
首先,開啟 checkpoint,每隔3秒做一次 checkpoint
-- Flink SQL
Flink SQL> SET execution.checkpointing.interval = 3s;
然后, 對(duì)于數(shù)據(jù)庫(kù)中的表?products
?使用 Flink SQL CLI 創(chuàng)建對(duì)應(yīng)的表,用于同步底層數(shù)據(jù)庫(kù)表的數(shù)據(jù)
-- Flink SQL
Flink SQL> CREATE TABLE products (id INT,name STRING,description STRING,PRIMARY KEY (id) NOT ENFORCED)
WITH ('connector' = 'mysql-cdc',
'hostname' = 'localhost',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'database-name' = 'mydb',
'table-name' = 'products',
'server-time-zone' = 'UTC'
);
最后,創(chuàng)建 d_products 表, 用來(lái)訂單數(shù)據(jù)寫入 Databend 中
-- Flink SQL
create table d_products (id INT,name String,description String, PRIMARY KEY (`id`) NOT ENFORCED)
with ('connector' = 'databend',
'url'='databend://localhost:8000',
'username'='databend',
'password'='databend',
'database-name'='default',
'table-name'='bend_products',
'sink.batch-size' = '5',
'sink.flush-interval' = '1000',
'sink.max-retries' = '3');
使用 Flink SQL 將 products 表中的數(shù)據(jù)同步到 Databend 的 d_products 表中:
insert into d_products select * from products;
此時(shí) flink job 就會(huì)提交成功,打開 flink UI 可以看到:
同時(shí)在 databend 中可以看到 MySQL 中的數(shù)據(jù)已經(jīng)同步過(guò)來(lái)了:
同步 Insert/Update 數(shù)據(jù)
此時(shí)我們?cè)?MySQL 中再插入 10 條數(shù)據(jù):
INSERT INTO products VALUES
(default,"scooter","Small 2-wheel scooter"),
(default,"car battery","12V car battery"),
(default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
(default,"hammer","12oz carpenter's hammer"),
(default,"hammer","14oz carpenter's hammer"),
(default,"hammer","16oz carpenter's hammer"),
(default,"rocks","box of assorted rocks"),
(default,"jacket","water resistent black wind breaker"),
(default,"cloud","test for databend"),
(default,"spare tire","24 inch spare tire");
這些數(shù)據(jù)會(huì)立即同步到 Databend 當(dāng)中。
假如此時(shí) MySQL 中更新了一條數(shù)據(jù):
那么 id=10 的數(shù)據(jù)在 databend 中也會(huì)被立即更新:
環(huán)境清理
操作結(jié)束后,在?docker-compose.yml
?文件所在的目錄下執(zhí)行如下命令停止所有容器:
docker-compose down
在 Flink 所在目錄?flink-1.16.0
?下執(zhí)行如下命令停止 Flink 集群:文章來(lái)源:http://www.zghlxwxcb.cn/news/detail-494901.html
./bin/stop-cluster.sh
結(jié)論
以上就是基于 Flink CDC 構(gòu)建 MySQL 到 Databend 的 實(shí)時(shí)數(shù)據(jù)同步的全部過(guò)程,通過(guò) Flink CDC connectors 可以替換 Debezium+Kafka 的數(shù)據(jù)采集模塊,實(shí)現(xiàn) Flink SQL 采集+計(jì)算+傳輸一體化,減少維護(hù)的組件,簡(jiǎn)化實(shí)時(shí)鏈路,減輕部署成本的同時(shí)也能達(dá)到 Exactly Once 的語(yǔ)義效果。文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-494901.html
到了這里,關(guān)于基于 Flink CDC 構(gòu)建 MySQL 到 Databend 的 實(shí)時(shí)數(shù)據(jù)同步的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!