【STM32】低功耗模式、WFI命令等進(jìn)入不了休眠的可能原因(系統(tǒng)定時器SysTick一直產(chǎn)生中斷)
低功耗模式
【STM32筆記】低功耗模式配置及避坑匯總
前文:
blog.csdn.net/weixin_53403301/article/details/128216064
【STM32筆記】HAL庫低功耗模式配置(ADC喚醒無法使用、低功耗模式無法燒錄解決方案)
__WFI();為匯編指令
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI __wfi
其作用就是設(shè)備休眠 并等待任意中斷實踐喚醒
實際調(diào)用:
__WFI();
但是 基本上直接都執(zhí)行不了
最常見的就是中斷沒清理掉
在Keil的調(diào)試中可以看到活躍的中斷
EPA分別表示Enable Pending Active
前兩個表示開啟但未發(fā)生 Active表示正在發(fā)生
所以進(jìn)入休眠前需要調(diào)用中斷清理
如:
__disable_irq();
或:
__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU); //清理喚醒標(biāo)志 防止立刻喚醒
等標(biāo)志
另外 實測發(fā)現(xiàn) 即使沒有中斷或喚醒標(biāo)志 也會導(dǎo)致__WFI();無法進(jìn)入 特別是程序剛開始運行的時候 這里其實就是沒消抖 需要延時一會(哪怕1us)
delay_us(1);
__WFI();
delay_us中其實是對系統(tǒng)定時器SysTick進(jìn)行賦值并計數(shù) 計數(shù)后會關(guān)閉 其實進(jìn)不了低功耗就是因為這個被開啟了 中斷一直有
直接關(guān)閉/開啟系統(tǒng)定時器也可以
SysTick->CTRL = 0;
再者 在進(jìn)行調(diào)試時 如果采用單步調(diào)試(也相當(dāng)于一種中斷) 則會執(zhí)行__WFI();后立馬執(zhí)行下一句
所以可以在__WFI();之前和之后打一個斷點 用全速跑來判斷是否進(jìn)入
如果開啟了系統(tǒng)滴答定時器,記得關(guān)閉系統(tǒng)滴答定時器,因為系統(tǒng)滴答定時器的中斷也會喚醒CPU。
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_Delay(1000);//延時1000毫秒
/* 采用位帶操作實現(xiàn)LED翻轉(zhuǎn) */
PCout(13) = !PCin(13);
if(times > 4)
{
//HAL_SuspendTick();//停止系統(tǒng)滴答計時器
CLEAR_BIT(SysTick->CTRL, SysTick_CTRL_ENABLE_Msk);//失能系統(tǒng)滴答定時器
HAL_PWR_EnterSLEEPMode(0, PWR_SLEEPENTRY_WFI);//WFI指令進(jìn)入睡眠模式
times = 0;
SET_BIT(SysTick->CTRL, SysTick_CTRL_ENABLE_Msk);//使能系統(tǒng)滴答定時器
//HAL_ResumeTick();//恢復(fù)系統(tǒng)滴答計時器
}
times++;//循環(huán)次數(shù)加一
}
在我前文進(jìn)入低功耗的函數(shù)中 每個模式都有一個10ms的消抖 其實這個可以省略
但我們用的是HAL庫 HAL庫初始化時鐘以后 會打開SysTick中斷 如果這個開著 就一直無法進(jìn)入低功耗(進(jìn)入就被中斷喚醒) 所以我這里加了個我自己寫的延時函數(shù) 其中就有關(guān)閉SysTick的語句 如果你不用這個消抖 沒啥BUG也行 但我還是建議加上去 畢竟也不差那10ms
附錄:Cortex-M架構(gòu)的SysTick系統(tǒng)定時器精準(zhǔn)延時和MCU位帶操作
SysTick系統(tǒng)定時器精準(zhǔn)延時
延時函數(shù)
SysTick->LOAD中的值為計數(shù)值
計算方法為工作頻率值/分頻值
比如工作頻率/1000 則周期為1ms
以ADuCM4050為例:
#include "ADuCM4050.h"
void delay_ms(unsigned int ms)
{
SysTick->LOAD = 26000000/1000-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能52MHz的系統(tǒng)定時器
while(ms--)
{
while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
}
SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
void delay_us(unsigned int us)
{
SysTick->LOAD = 26000000/1000/1000-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能52MHz的系統(tǒng)定時器
while(us--)
{
while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
}
SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
其中的52000000表示芯片的系統(tǒng)定時器頻率 32系列一般為外部定時器頻率的兩倍
Cortex-M架構(gòu)SysTick系統(tǒng)定時器阻塞和非阻塞延時
阻塞延時
首先是最常用的阻塞延時
void delay_ms(unsigned int ms)
{
SysTick->LOAD = 50000000/1000-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系統(tǒng)定時器
while(ms--)
{
while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
}
SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
void delay_us(unsigned int us)
{
SysTick->LOAD = 50000000/1000/1000-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系統(tǒng)定時器
while(us--)
{
while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
}
SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
50000000表示工作頻率
分頻后即可得到不同的延時時間
以此類推
那么 不用兩個嵌套while循環(huán) 也可以寫成:
void delay_ms(unsigned int ms)
{
SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系統(tǒng)定時器
while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
void delay_us(unsigned int us)
{
SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系統(tǒng)定時器
while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
但是這種寫法有個弊端
那就是輸入ms后,最大定時不得超過計數(shù)值,也就是不能超過LOAD的最大值,否則溢出以后,則無法正常工作
而LOAD如果最大是32位 也就是4294967295
晶振為50M的話 50M的計數(shù)值為1s 4294967295計數(shù)值約為85s
固最大定時時間為85s
但用嵌套while的話 最大可以支持定時4294967295*85s
非阻塞延時
如果采用非阻塞的話 直接改寫第二種方法就好了:
void delay_ms(unsigned int ms)
{
SysTick->LOAD = 50000000/1000*ms-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系統(tǒng)定時器
//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
//SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
void delay_us(unsigned int us)
{
SysTick->LOAD = 50000000/1000/1000*us-1; // Count from 255 to 0 (256 cycles) 載入計數(shù)值 定時器從這個值開始計數(shù)
SysTick->VAL = 0; // Clear current value as well as count flag 清空計數(shù)值到達(dá)0后的標(biāo)記
SysTick->CTRL = 5; // Enable SysTick timer with processor clock 使能26MHz的系統(tǒng)定時器
//while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set 等待
//SysTick->CTRL = 0; // Disable SysTick 關(guān)閉系統(tǒng)定時器
}
將等待和關(guān)閉定時器語句去掉
在使用時加上判斷即可變?yōu)樽枞?/p>
delay_ms(500);
while ((SysTick->CTRL & 0x00010000)==0);
SysTick->CTRL = 0;
在非阻塞狀態(tài)下 可以提交定時器后 去做別的事情 然后再來等待
不過這樣又有一個弊端 那就是定時器會自動重載 可能做別的事情以后 定時器跑過了 然后就要等85s才能停下
故可以通過內(nèi)部定時器來進(jìn)行非阻塞延時函數(shù)的編寫
基本上每個mcu的內(nèi)部定時器都可以配置自動重載等功能 網(wǎng)上資料很多 這里就不再闡述了
位帶操作
位帶代碼
M3、M4架構(gòu)的單片機 其輸出口地址為端口地址+20 輸入為+16
M0架構(gòu)的單片機 其輸出口地址為端口地址+12 輸入為+8
以ADuCM4050為列:
位帶宏定義
#ifndef __GPIO_H__
#define __GPIO_H__
#include "ADuCM4050.h"
#include "adi_gpio.h"
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
#define GPIO0_ODR_Addr (ADI_GPIO0_BASE+20) //0x40020014
#define GPIO0_IDR_Addr (ADI_GPIO0_BASE+16) //0x40020010
#define GPIO1_ODR_Addr (ADI_GPIO1_BASE+20) //0x40020054
#define GPIO1_IDR_Addr (ADI_GPIO1_BASE+16) //0x40020050
#define GPIO2_ODR_Addr (ADI_GPIO2_BASE+20) //0x40020094
#define GPIO2_IDR_Addr (ADI_GPIO2_BASE+16) //0x40020090
#define GPIO3_ODR_Addr (ADI_GPIO3_BASE+20) //0x400200D4
#define GPIO3_IDR_Addr (ADI_GPIO3_BASE+16) //0x400200D0
#define P0_O(n) BIT_ADDR(GPIO0_ODR_Addr,n) //輸出
#define P0_I(n) BIT_ADDR(GPIO0_IDR_Addr,n) //輸入
#define P1_O(n) BIT_ADDR(GPIO1_ODR_Addr,n) //輸出
#define P1_I(n) BIT_ADDR(GPIO1_IDR_Addr,n) //輸入
#define P2_O(n) BIT_ADDR(GPIO2_ODR_Addr,n) //輸出
#define P2_I(n) BIT_ADDR(GPIO2_IDR_Addr,n) //輸入
#define P3_O(n) BIT_ADDR(GPIO3_ODR_Addr,n) //輸出
#define P3_I(n) BIT_ADDR(GPIO3_IDR_Addr,n) //輸入
#define Port0 (ADI_GPIO_PORT0)
#define Port1 (ADI_GPIO_PORT1)
#define Port2 (ADI_GPIO_PORT2)
#define Port3 (ADI_GPIO_PORT3)
#define Pin0 (ADI_GPIO_PIN_0)
#define Pin1 (ADI_GPIO_PIN_1)
#define Pin2 (ADI_GPIO_PIN_2)
#define Pin3 (ADI_GPIO_PIN_3)
#define Pin4 (ADI_GPIO_PIN_4)
#define Pin5 (ADI_GPIO_PIN_5)
#define Pin6 (ADI_GPIO_PIN_6)
#define Pin7 (ADI_GPIO_PIN_7)
#define Pin8 (ADI_GPIO_PIN_8)
#define Pin9 (ADI_GPIO_PIN_9)
#define Pin10 (ADI_GPIO_PIN_10)
#define Pin11 (ADI_GPIO_PIN_11)
#define Pin12 (ADI_GPIO_PIN_12)
#define Pin13 (ADI_GPIO_PIN_13)
#define Pin14 (ADI_GPIO_PIN_14)
#define Pin15 (ADI_GPIO_PIN_15)
void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag);
void GPIO_BUS_OUT(unsigned int port,unsigned int num);
void P0_BUS_O(unsigned int num);
unsigned int P0_BUS_I(void);
void P1_BUS_O(unsigned int num);
unsigned int P1_BUS_I(void);
void P2_BUS_O(unsigned int num);
unsigned int P2_BUS_I(void);
void P3_BUS_O(unsigned int num);
unsigned int P3_BUS_I(void);
#endif
總線函數(shù)
#include "ADuCM4050.h"
#include "adi_gpio.h"
#include "GPIO.h"
void GPIO_OUT(unsigned int port,unsigned int pin,unsigned int flag)
{
switch(port)
{
case 0:{
switch(pin)
{
case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_0));};break;
case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_1));};break;
case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_2));};break;
case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_3));};break;
case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_4));};break;
case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_5));};break;
case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_6));};break;
case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_7));};break;
case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_8));};break;
case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_9));};break;
case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_10));};break;
case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_11));};break;
case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_12));};break;
case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_13));};break;
case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_14));};break;
case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT0),(ADI_GPIO_PIN_15));};break;
default:pin=0;break;
}
}break;
case 1:{
switch(pin)
{
case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_0));};break;
case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_1));};break;
case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_2));};break;
case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_3));};break;
case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_4));};break;
case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_5));};break;
case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_6));};break;
case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_7));};break;
case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_8));};break;
case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_9));};break;
case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_10));};break;
case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_11));};break;
case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_12));};break;
case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_13));};break;
case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_14));};break;
case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT1),(ADI_GPIO_PIN_15));};break;
default:pin=0;break;
}
}break;
case 2:{
switch(pin)
{
case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_0));};break;
case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_1));};break;
case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_2));};break;
case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_3));};break;
case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_4));};break;
case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_5));};break;
case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_6));};break;
case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_7));};break;
case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_8));};break;
case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_9));};break;
case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_10));};break;
case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_11));};break;
case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_12));};break;
case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_13));};break;
case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_14));};break;
case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT2),(ADI_GPIO_PIN_15));};break;
default:pin=0;break;
}
}break;
case 3:{
switch(pin)
{
case 0:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_0));};break;
case 1:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_1));};break;
case 2:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_2));};break;
case 3:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_3));};break;
case 4:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_4));};break;
case 5:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_5));};break;
case 6:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_6));};break;
case 7:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_7));};break;
case 8:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_8));};break;
case 9:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_9));};break;
case 10:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_10));};break;
case 11:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_11));};break;
case 12:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_12));};break;
case 13:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_13));};break;
case 14:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_14));};break;
case 15:if(flag==1){adi_gpio_SetHigh((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));}else{adi_gpio_SetLow((ADI_GPIO_PORT3),(ADI_GPIO_PIN_15));};break;
default:pin=0;break;
}
}break;
default:port=0;break;
}
}
void GPIO_BUS_OUT(unsigned int port,unsigned int num) //num最大為0xffff
{
int i;
for(i=0;i<16;i++)
{
GPIO_OUT(port,i,(num>>i)&0x0001);
}
}
void P0_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
P0_O(i)=(num>>i)&0x0001;
}
}
unsigned int P0_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(P0_I(i)<<i)&0xFFFF;
}
return num;
}
void P1_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
P1_O(i)=(num>>i)&0x0001;
}
}
unsigned int P1_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(P1_I(i)<<i)&0xFFFF;
}
return num;
}
void P2_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
P2_O(i)=(num>>i)&0x0001;
}
}
unsigned int P2_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(P2_I(i)<<i)&0xFFFF;
}
return num;
}
void P3_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
P3_O(i)=(num>>i)&0x0001;
}
}
unsigned int P3_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(P3_I(i)<<i)&0xFFFF;
}
return num;
}
一、位帶操作理論及實踐
位帶操作的概念其實30年前就有了,那還是 CM3 將此能力進(jìn)化,這里的位帶操作是 8051 位尋址區(qū)的威力大幅加強版
位帶區(qū): 支持位帶操作的地址區(qū)
位帶別名: 對別名地址的訪問最終作 用到位帶區(qū)的訪問上(注意:這中途有一個 地址映射過程)
位帶操作對于硬件 I/O 密集型的底層程序最有用處
支持了位帶操作后,可以使用普通的加載/存儲指令來對單一的比特進(jìn)行讀寫。在CM4中,有兩個區(qū)中實現(xiàn)了位帶。其中一個是SRAM區(qū)的最低1MB范圍,第二個則是片內(nèi)外設(shè)區(qū)的最低1MB范圍。這兩個區(qū)中的地址除了可以像普通的RAM一樣使用外,它們還都有自己的“位帶別名區(qū)”,位帶別名區(qū)把每個比特膨脹成一個32位的字。當(dāng)你通過位帶別名區(qū)訪問這些字時,就可以達(dá)到訪問原始比特的目的。
位操作就是可以單獨的對一個比特位讀和寫,類似與51中sbit定義的變量,stm32中通過訪問位帶別名區(qū)來實現(xiàn)位操作的功能
STM32中有兩個地方實現(xiàn)了位帶,一個是SRAM,一個是片上外設(shè)。
(1)位帶本質(zhì)上是一塊地址區(qū)(例如每一位地址位對應(yīng)一個寄存器)映射到另一片地址區(qū)(實現(xiàn)每一位地址位對應(yīng)一個寄存器中的一位),該區(qū)域就叫做位帶別名區(qū),將每一位膨脹成一個32位的字。
(2)位帶區(qū)的4個字節(jié)對應(yīng)實際寄存器或內(nèi)存區(qū)的一個位,雖然變大到4個字節(jié),但實際上只有最低位有效(代表0或1)
只有位帶可以直接用=賦值的方式來操作寄存器 位帶是把寄存器上的每一位 膨脹到32位 映射到位帶區(qū) 比如0x4002 0000地址的第0個bit 映射到位帶區(qū)的0地址 那么其對應(yīng)的位帶映射地址為0x00 - 0x04 一共32位 但只有LSB有效 采用位帶的方式用=賦值時 就是把位帶區(qū)對應(yīng)的LSB賦值 然后MCU再轉(zhuǎn)到寄存器對應(yīng)的位里面 寄存器操作時 如果不改變其他位上面的值 那就只能通過&=或者|=的方式進(jìn)行
要設(shè)置0x2000 0000這個字節(jié)的第二個位bit2為1,使用位帶操作的步驟有:
1、將1寫入位 帶別名區(qū)對應(yīng)的映射地址(即0x22000008,因為1bit對應(yīng)4個byte);
2、將0x2000 0000的值 讀取到內(nèi)部的緩沖區(qū)(這一步驟是內(nèi)核完成的,屬于原子操作,不需要用戶操作);
3、將bit2置1,再把值寫 回到0x2000 0000(屬于原子操作,不需要用戶操作)。
關(guān)于GPIO引腳對應(yīng)的訪問地址,可以參考以下公式
寄存器位帶別名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引腳編號4
如:端口F訪問的起始地址GPIOF_BASE
#define GPIOF ((GPIO_TypeDef *)GPIOF_BASE)
但好在官方庫里面都幫我們定義好了 只需要在BASE地址加上便宜即可
例如:
GPIOF的ODR寄存器的地址 = GPIOF_BASE + 0x14
寄存器位帶別名 = 0x42000000 + (寄存器的地址-0x40000000)32 + 引腳編號4
設(shè)置PF9引腳的話:
uint32_t *PF9_BitBand =
*(uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR– 0x40000000) *32 + 9*4)
封裝一下:
#define PFout(x) *(volatile uint32_t *)(0x42000000 + ((uint32_t )&GPIOF->ODR – 0x40000000) *32 + x*4)
現(xiàn)在 可以把通用部分封裝成一個小定義:
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
那么 設(shè)置PF引腳的函數(shù)可以定義:
#define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414
#define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410
#define PF_O(n) BIT_ADDR(GPIOF_ODR_Addr,n) //輸出
#define PF_I(n) BIT_ADDR(GPIOF_IDR_Addr,n) //輸入
若使PF9輸入輸出則:
PF_O(9)=1; //輸出高電平
uint8_t dat = PF_I(9); //獲取PF9引腳的值
總線輸入輸出:
void PF_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PF_O(i)=(num>>i)&0x0001;
}
}
unsigned int PF_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PF_I(i)<<i)&0xFFFF;
}
return num;
}
STM32的可用下面的函數(shù):
#ifndef __GPIO_H__
#define __GPIO_H__
#include "stm32l496xx.h"
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
#define GPIOA_ODR_Addr (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr (GPIOB_BASE+20) //0x40020414
#define GPIOC_ODR_Addr (GPIOC_BASE+20) //0x40020814
#define GPIOD_ODR_Addr (GPIOD_BASE+20) //0x40020C14
#define GPIOE_ODR_Addr (GPIOE_BASE+20) //0x40021014
#define GPIOF_ODR_Addr (GPIOF_BASE+20) //0x40021414
#define GPIOG_ODR_Addr (GPIOG_BASE+20) //0x40021814
#define GPIOH_ODR_Addr (GPIOH_BASE+20) //0x40021C14
#define GPIOI_ODR_Addr (GPIOI_BASE+20) //0x40022014
#define GPIOA_IDR_Addr (GPIOA_BASE+16) //0x40020010
#define GPIOB_IDR_Addr (GPIOB_BASE+16) //0x40020410
#define GPIOC_IDR_Addr (GPIOC_BASE+16) //0x40020810
#define GPIOD_IDR_Addr (GPIOD_BASE+16) //0x40020C10
#define GPIOE_IDR_Addr (GPIOE_BASE+16) //0x40021010
#define GPIOF_IDR_Addr (GPIOF_BASE+16) //0x40021410
#define GPIOG_IDR_Addr (GPIOG_BASE+16) //0x40021810
#define GPIOH_IDR_Addr (GPIOH_BASE+16) //0x40021C10
#define GPIOI_IDR_Addr (GPIOI_BASE+16) //0x40022010
#define PA_O(n) BIT_ADDR(GPIOA_ODR_Addr,n) //輸出
#define PA_I(n) BIT_ADDR(GPIOA_IDR_Addr,n) //輸入
#define PB_O(n) BIT_ADDR(GPIOB_ODR_Addr,n) //輸出
#define PB_I(n) BIT_ADDR(GPIOB_IDR_Addr,n) //輸入
#define PC_O(n) BIT_ADDR(GPIOC_ODR_Addr,n) //輸出
#define PC_I(n) BIT_ADDR(GPIOC_IDR_Addr,n) //輸入
#define PD_O(n) BIT_ADDR(GPIOD_ODR_Addr,n) //輸出
#define PD_I(n) BIT_ADDR(GPIOD_IDR_Addr,n) //輸入
#define PE_O(n) BIT_ADDR(GPIOE_ODR_Addr,n) //輸出
#define PE_I(n) BIT_ADDR(GPIOE_IDR_Addr,n) //輸入
#define PF_O(n) BIT_ADDR(GPIOF_ODR_Addr,n) //輸出
#define PF_I(n) BIT_ADDR(GPIOF_IDR_Addr,n) //輸入
#define PG_O(n) BIT_ADDR(GPIOG_ODR_Addr,n) //輸出
#define PG_I(n) BIT_ADDR(GPIOG_IDR_Addr,n) //輸入
#define PH_O(n) BIT_ADDR(GPIOH_ODR_Addr,n) //輸出
#define PH_I(n) BIT_ADDR(GPIOH_IDR_Addr,n) //輸入
#define PI_O(n) BIT_ADDR(GPIOI_ODR_Addr,n) //輸出
#define PI_I(n) BIT_ADDR(GPIOI_IDR_Addr,n) //輸入
void PA_BUS_O(unsigned int num);
unsigned int PA_BUS_I(void);
void PB_BUS_O(unsigned int num);
unsigned int PB_BUS_I(void);
void PC_BUS_O(unsigned int num);
unsigned int PC_BUS_I(void);
void PD_BUS_O(unsigned int num);
unsigned int PD_BUS_I(void);
void PE_BUS_O(unsigned int num);
unsigned int PE_BUS_I(void);
void PF_BUS_O(unsigned int num);
unsigned int PF_BUS_I(void);
void PG_BUS_O(unsigned int num);
unsigned int PG_BUS_I(void);
void PH_BUS_O(unsigned int num);
unsigned int PH_BUS_I(void);
void PI_BUS_O(unsigned int num);
unsigned int PI_BUS_I(void);
#endif
#include "GPIO.h"
void PA_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PA_O(i)=(num>>i)&0x0001;
}
}
unsigned int PA_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PA_I(i)<<i)&0xFFFF;
}
return num;
}
void PB_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PB_O(i)=(num>>i)&0x0001;
}
}
unsigned int PB_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PB_I(i)<<i)&0xFFFF;
}
return num;
}
void PC_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PC_O(i)=(num>>i)&0x0001;
}
}
unsigned int PC_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PC_I(i)<<i)&0xFFFF;
}
return num;
}
void PD_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PD_O(i)=(num>>i)&0x0001;
}
}
unsigned int PD_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PD_I(i)<<i)&0xFFFF;
}
return num;
}
void PE_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PE_O(i)=(num>>i)&0x0001;
}
}
unsigned int PE_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PE_I(i)<<i)&0xFFFF;
}
return num;
}
void PF_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PF_O(i)=(num>>i)&0x0001;
}
}
unsigned int PF_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PF_I(i)<<i)&0xFFFF;
}
return num;
}
void PG_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PG_O(i)=(num>>i)&0x0001;
}
}
unsigned int PG_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PG_I(i)<<i)&0xFFFF;
}
return num;
}
void PH_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PH_O(i)=(num>>i)&0x0001;
}
}
unsigned int PH_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PH_I(i)<<i)&0xFFFF;
}
return num;
}
void PI_BUS_O(unsigned int num) //輸入值num最大為0xFFFF
{
int i;
for(i=0;i<16;i++)
{
PI_O(i)=(num>>i)&0x0001;
}
}
unsigned int PI_BUS_I(void) //輸出值num最大為0xFFFF
{
unsigned int num;
int i;
for(i=0;i<16;i++)
{
num=num+(PI_I(i)<<i)&0xFFFF;
}
return num;
}
二、如何判斷MCU的外設(shè)是否支持位帶
根據(jù)《ARM Cortex-M3與Cortex-M4權(quán)威指南(第3版)》中第6章第7節(jié)描述
也就是說 要實現(xiàn)對GPIO的位帶操作 必須保證GPIO位于外設(shè)區(qū)域的第一個1MB中
第一個1MB應(yīng)該是0x4010 0000之前 位帶不是直接操作地址 而是操作地址映射 地址映射被操作以后 MCU自動會修改對應(yīng)寄存器的值
位帶區(qū)只有1MB 所以只能改0x4000 0000 - 0x400F FFFF的寄存器
像F4系列 GPIO的首地址為0x4002 0000 就可以用位帶來更改文章來源:http://www.zghlxwxcb.cn/news/detail-686111.html
STM32L476的GPIO就不行:
AHB2的都不能用位帶
ABP 還有AHB1都可以用
但是L476的寄存器里面 GPIO和ADC都是AHB2文章來源地址http://www.zghlxwxcb.cn/news/detail-686111.html
到了這里,關(guān)于【STM32筆記】低功耗模式、WFI命令等進(jìn)入不了休眠的可能原因(系統(tǒng)定時器SysTick一直產(chǎn)生中斷)的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!