国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

視覺SLAM14講筆記-第4講-李群與李代數(shù)

這篇具有很好參考價(jià)值的文章主要介紹了視覺SLAM14講筆記-第4講-李群與李代數(shù)。希望對大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問。

李代數(shù)的引出:

在優(yōu)化問題中去解一個(gè)旋轉(zhuǎn)矩陣,可能會有一些阻礙,因?yàn)樗鼘臃▽?dǎo)數(shù)不是很友好(旋轉(zhuǎn)矩陣加上一個(gè)微小偏移量可能就不是一個(gè)旋轉(zhuǎn)矩陣),因?yàn)樾D(zhuǎn)矩陣本身還有一些約束條件,那樣再求導(dǎo)的過程中可能會破壞要優(yōu)化的矩陣是旋轉(zhuǎn)矩陣的本質(zhì)條件,所以這里引入了一個(gè)乘法導(dǎo)數(shù),即本章提到的左擾動(dòng)或右擾動(dòng)。
參考文獻(xiàn):https://www.cnblogs.com/dzyBK/p上/13961868.html

上一章我們知道旋轉(zhuǎn)矩陣構(gòu)成了特殊正交群 S O ( 3 ) SO(3) SO(3),變換矩陣構(gòu)成了特殊歐式群 S E ( 3 ) SE(3) SE(3)

的引出:
這里我們簡單敘述不做深入討論。群是一種集合加上一種運(yùn)算的代數(shù)結(jié)構(gòu)。而李群是一種群,李群是指具有連續(xù)(光滑)性質(zhì)的群,例如特殊正交群 S O ( 3 ) SO(3) SO(3)和特殊歐式群 S E ( 3 ) SE(3) SE(3),每個(gè)李群都有對應(yīng)的李代數(shù)。

李代數(shù)的引出:
這里我們簡單敘述不做深入討論。李代數(shù)反應(yīng)了李群的導(dǎo)數(shù)(局部)性質(zhì),在李群的正切空間上。而李群通過對數(shù)映射到李代數(shù),李代數(shù)通過指數(shù)映射到李群。

經(jīng)過推導(dǎo),旋轉(zhuǎn)矩陣對應(yīng)的李代數(shù)就是旋轉(zhuǎn)向量(3維)。變換矩陣對應(yīng)的李代數(shù)是6維向量,平移在前,旋轉(zhuǎn)在后。

使用李代數(shù)的一大動(dòng)機(jī)是進(jìn)行優(yōu)化,而在優(yōu)化過程中導(dǎo)數(shù)是非常必要的信息。

Baker-Campbell-Hausdorff公式的引出
l n ( e x p ( ? 1 ∧ ) e x p ( ? 2 ∧ ) ) ≈ { J l ( ? 2 ) ? 1 ? 1 + ? 2 , if? ? 1 ?is?small J r ( ? 1 ) ? 1 ? 2 + ? 1 , if? ? 2 ?is?small ln(exp(\phi_1^{\wedge})exp(\phi_2^{\wedge})) \approx \begin{cases} J_l(\phi_2)^{-1}\phi_1+\phi_2, & \text{if $\phi_1$ is small} \\[2ex] J_r(\phi_1)^{-1}\phi_2+\phi_1, & \text{if $\phi_2$ is small} \end{cases} ln(exp(?1?)exp(?2?))? ? ??Jl?(?2?)?1?1?+?2?,Jr?(?1?)?1?2?+?1?,?if??1??is?smallif??2??is?small?

BCH公式可以告訴我們當(dāng)李代數(shù)發(fā)生了小量變化,旋轉(zhuǎn)矩陣對應(yīng)的變化,有利于計(jì)算出李代數(shù)導(dǎo)數(shù),然而這個(gè)公式并不是萬能的,用BCH線性近似來對李代數(shù)求導(dǎo)仍然有比較復(fù)雜的 J r J_r Jr?,
所以下面我們使用擾動(dòng)模型來對李代數(shù)求導(dǎo),推導(dǎo)如下:
? ( R p ) ? φ = lim ? φ → 0 e x p ( φ ∧ ) e x p ( ? ∧ ) p ? e x p ( ? ∧ ) p φ ≈ lim ? φ → 0 ( 1 + φ ∧ ) e x p ( ? ∧ ) p ? e x p ( ? ∧ ) p φ = lim ? φ → 0 φ ∧ R p φ = lim ? φ → 0 ? ( R p ) ∧ φ φ = ? ( R p ) ∧ \dfrac{\partial(Rp)}{\partial\varphi} = \lim_{\varphi \to 0} \frac{exp(\varphi^{\wedge})exp(\phi^{\wedge})p-exp(\phi^{\wedge})p}{\varphi} \\ \approx \lim_{\varphi \to 0} \frac{(1+\varphi^{\wedge})exp(\phi^{\wedge})p-exp(\phi^{\wedge})p}{\varphi} \\ = \lim_{\varphi \to 0} \frac{\varphi^{\wedge}Rp}{\varphi} = \lim_{\varphi \to 0} \frac{-(Rp)^{\wedge}\varphi}{\varphi}=-(Rp)^{\wedge} ?φ?(Rp)?=φ0lim?φexp(φ)exp(?)p?exp(?)p?φ0lim?φ(1+φ)exp(?)p?exp(?)p?=φ0lim?φφRp?=φ0lim?φ?(Rp)φ?=?(Rp)
第2行使用到 e x e^x ex的泰勒展開公式。
第3行使用到了公式 a ∧ b = ? b ∧ a a^{\wedge}b=-b^{\wedge}a ab=?ba

同理, S E ( 3 ) SE(3) SE(3)上也有對應(yīng)的擾動(dòng)求導(dǎo)公式,這里不展開敘述了。

相似變換群與李代數(shù)(單目視覺)
由于單目的尺度不確定性,如果在單目SLAM中使用SE(3)表示位姿,那么由于尺度不確定性與尺度漂移,整個(gè)SLAM過程中的尺度會發(fā)生變化,這在 S E ( 3 ) SE(3) SE(3)中未能體現(xiàn)出來。因此,在單目情況下一般會顯示地把尺度因子表達(dá)出來。用數(shù)學(xué)語言來說,對于位于空間的點(diǎn)p,在相機(jī)坐標(biāo)系下要經(jīng)過一個(gè)相似變換,而非歐式變換。
與SO(3)與SE(3)相似,相似變換亦對矩陣乘法構(gòu)成群,稱為相似變換群Sim(3)。
Sim(3)也有對應(yīng)的李代數(shù)sim(3),他是一個(gè)7維向量 ζ \zeta ζ,它的前6維與se(3)相同,最后多了一項(xiàng) σ \sigma σ

寫到最后,這一章偏理論,實(shí)際在寫代碼的時(shí)候我們會用ceses、g2o等庫很方便直接計(jì)算出優(yōu)化后的位姿。所以并不需要自己手動(dòng)給出李代數(shù)的導(dǎo)數(shù)。有的話后續(xù)再分解。文章來源地址http://www.zghlxwxcb.cn/news/detail-682887.html

到了這里,關(guān)于視覺SLAM14講筆記-第4講-李群與李代數(shù)的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • 【SLAM14講】02 視覺SLAM基本架構(gòu)

    【SLAM14講】02 視覺SLAM基本架構(gòu)

    根據(jù)安裝位置分為兩類: 攜帶于機(jī)器人本體 上的傳感器,比如激光傳感器、相機(jī)、輪式編碼器、慣性測量單元(Inertial Measurement Unit, IMU)等等,它們測到的通常都是一些間接的物理量而不是直接的位置數(shù)據(jù)。例如, 輪式編碼器會測到輪子轉(zhuǎn)動(dòng)的角度、IMU 測量運(yùn)動(dòng)的角速度和

    2024年02月12日
    瀏覽(16)
  • 知識點(diǎn)記錄:李群李代數(shù),微分流形,微分幾何,圖論

    知識點(diǎn)記錄:李群李代數(shù),微分流形,微分幾何,圖論

    李群(Lie group)是具有群結(jié)構(gòu)的實(shí)流形或者復(fù)流形,并且群中的加法運(yùn)算和逆元運(yùn)算是流形中的解析映射。 李代數(shù)Lie algebra):一類重要的 非結(jié)合代數(shù) 。非結(jié)合代數(shù)是環(huán)論的一個(gè)分支,與結(jié)合代數(shù)有著密切聯(lián)系。結(jié)合代數(shù)的定義中把乘法結(jié)合律刪去,就是非結(jié)合代數(shù)。 微分

    2024年02月10日
    瀏覽(21)
  • 手撕 視覺slam14講 ch7 / pose_estimation_3d2d.cpp (1)

    手撕 視覺slam14講 ch7 / pose_estimation_3d2d.cpp (1)

    ?1. 讀圖,兩張rgb(cv::imread) ?2. 找到兩張rgb圖中的特征點(diǎn)匹配對 ?????? 2.1定義所需要的參數(shù):keypoints1, keypoints2,matches ?????? 2.2 提取每張圖像的檢測 Oriented FAST 角點(diǎn)位置并匹配篩選(調(diào)用功能函數(shù)1) ?3. 建立3d點(diǎn)(像素坐標(biāo)到相機(jī)坐標(biāo)) ????????3.1讀出深度圖(c

    2024年02月10日
    瀏覽(22)
  • 【李群李代數(shù)】李群控制器(lie-group-controllers)介紹——控制 SO(3) 空間中的系統(tǒng)的比例控制器Demo...

    【李群李代數(shù)】李群控制器(lie-group-controllers)介紹——控制 SO(3) 空間中的系統(tǒng)的比例控制器Demo...

    李群控制器SO(3)測試 測試代碼是一個(gè)用于控制 SO(3) 空間中的系統(tǒng)的比例控制器。它通過計(jì)算控制策略來使當(dāng)前狀態(tài)逼近期望狀態(tài)。該控制器使用比例增益 kp 進(jìn)行參數(shù)化,然后進(jìn)行一系列迭代以更新系統(tǒng)狀態(tài),最終檢查狀態(tài)誤差是否小于給定的閾值。這個(gè)控制器用于姿態(tài)控制

    2024年02月12日
    瀏覽(28)
  • 《視覺SLAM十四講》筆記(4-6)

    《視覺SLAM十四講》筆記(4-6)

    為了解決什么樣的相機(jī)位姿最符合當(dāng)前觀測數(shù)據(jù)的問題,可以構(gòu)建出一個(gè)優(yōu)化問題來求解最優(yōu)的R和t。以達(dá)到誤差最小。但是旋轉(zhuǎn)矩陣自身是帶有約束的(正交且行列式為1),這會引入額外的約束,導(dǎo)致優(yōu)化變得困難。通過李群——李代數(shù)這種關(guān)系,希望把位姿估計(jì)的問題變

    2024年02月15日
    瀏覽(54)
  • SLAM面試筆記(8) — 計(jì)算機(jī)視覺面試題

    SLAM面試筆記(8) — 計(jì)算機(jī)視覺面試題

    目錄 問題1:目標(biāo)檢測的算法分類 問題2:卷積神經(jīng)網(wǎng)絡(luò)的組成 問題3:輸入層的作用 問題4:卷積層作用? 問題5:卷積核類型 問題6:1×1卷積核作用 問題7:卷積核是否越大越好 問題8:棋盤效應(yīng)及解決辦法 問題9:如何減少卷積層參數(shù) 問題10:神經(jīng)網(wǎng)絡(luò)可視化工具 問題11:池

    2024年02月07日
    瀏覽(77)
  • 超全!SLAM論文與開源代碼匯總(激光+視覺+融合)

    超全!SLAM論文與開源代碼匯總(激光+視覺+融合)

    1.代表性視覺SLAM算法論文與開源代碼總結(jié) 2.代表性激光SLAM算法論文與開源代碼總結(jié) 3.代表性激光-視覺融合SLAM算法論文總結(jié) 激光-視覺-IMU-GPS融合SLAM算法理論與代碼講解: https://mp.weixin.qq.com/s/CEJPWHVAnKsLepqP3lSAbg 參考文獻(xiàn) [1] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of

    2024年02月05日
    瀏覽(20)
  • 【視覺SLAM十四講學(xué)習(xí)筆記】第五講——相機(jī)模型

    【視覺SLAM十四講學(xué)習(xí)筆記】第五講——相機(jī)模型

    專欄系列文章如下: 【視覺SLAM十四講學(xué)習(xí)筆記】第一講——SLAM介紹 【視覺SLAM十四講學(xué)習(xí)筆記】第二講——初識SLAM 【視覺SLAM十四講學(xué)習(xí)筆記】第三講——旋轉(zhuǎn)矩陣 【視覺SLAM十四講學(xué)習(xí)筆記】第三講——旋轉(zhuǎn)向量和歐拉角 【視覺SLAM十四講學(xué)習(xí)筆記】第三講——四元數(shù) 【視

    2024年01月17日
    瀏覽(27)
  • 視覺學(xué)習(xí)筆記4——ORB-SLAM3的地圖保存與使用

    視覺學(xué)習(xí)筆記4——ORB-SLAM3的地圖保存與使用

    前言:視覺學(xué)習(xí)筆記4——學(xué)習(xí)研究ORB-SLAM3 ORB-SLAM3基本搭建完成,具體可以看開頭的系列文章目錄,接下來需要研究如何自定義自己的地圖,也就是實(shí)時(shí)地圖的保存與運(yùn)用。 按照開源說明來看,地圖保存與加載在V1.0已經(jīng)實(shí)現(xiàn)了,需要修改相應(yīng)的yaml文件即可,也就是相機(jī)yaml文

    2024年02月06日
    瀏覽(21)
  • 機(jī)器人學(xué)|手機(jī)玻璃加工全自動(dòng)化——AGV+機(jī)器人+視覺解決方案(含雙目三維視覺SLAM建圖、MATLAB的AGV路徑規(guī)劃導(dǎo)航避障、六軸機(jī)械手臂建模與路徑規(guī)劃仿真,附帶源代碼)

    機(jī)器人學(xué)|手機(jī)玻璃加工全自動(dòng)化——AGV+機(jī)器人+視覺解決方案(含雙目三維視覺SLAM建圖、MATLAB的AGV路徑規(guī)劃導(dǎo)航避障、六軸機(jī)械手臂建模與路徑規(guī)劃仿真,附帶源代碼)

    文章目錄 前言 一、國內(nèi)外移動(dòng)操作機(jī)器人現(xiàn)狀 二、方案概述 三、主要部件BOM清單 1.差動(dòng)輪式AGV: 2.UR5系列機(jī)械臂 3.Cognex智能相機(jī) 4.加工臺 5.控制系統(tǒng) 6.電源和電纜 四、技術(shù)點(diǎn)及工作流程 五、計(jì)算自動(dòng)化方案與人工方案成本收回時(shí)間 1.自動(dòng)化方案成本分析: 2.人工方案成本

    2024年01月22日
    瀏覽(16)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包