分類目錄:《大模型從入門到應(yīng)用》總目錄
LangChain系列文章:
- 基礎(chǔ)知識(shí)
- 快速入門
- 安裝與環(huán)境配置
- 鏈(Chains)、代理(Agent:)和記憶(Memory)
- 快速開發(fā)聊天模型
- 模型(Models)
- 基礎(chǔ)知識(shí)
- 大型語言模型(LLMs)
- 基礎(chǔ)知識(shí)
- LLM的異步API、自定義LLM包裝器、虛假LLM和人類輸入LLM(Human Input LLM)
- 緩存LLM的調(diào)用結(jié)果
- 加載與保存LLM類、流式傳輸LLM與Chat Model響應(yīng)和跟蹤tokens使用情況
- 聊天模型(Chat Models)
- 基礎(chǔ)知識(shí)
- 使用少量示例和響應(yīng)流式傳輸
- 文本嵌入模型
- Aleph Alpha、Amazon Bedrock、Azure OpenAI、Cohere等
- Embaas、Fake Embeddings、Google Vertex AI PaLM等
- 提示(Prompts)
- 基礎(chǔ)知識(shí)
- 提示模板
- 基礎(chǔ)知識(shí)
- 連接到特征存儲(chǔ)
- 創(chuàng)建自定義提示模板和含有Few-Shot示例的提示模板
- 部分填充的提示模板和提示合成
- 序列化提示信息
- 示例選擇器(Example Selectors)
- 輸出解析器(Output Parsers)
- 記憶(Memory)
- 基礎(chǔ)知識(shí)
- 記憶的類型
- 會(huì)話緩存記憶、會(huì)話緩存窗口記憶和實(shí)體記憶
- 對(duì)話知識(shí)圖譜記憶、對(duì)話摘要記憶和會(huì)話摘要緩沖記憶
- 對(duì)話令牌緩沖存儲(chǔ)器和基于向量存儲(chǔ)的記憶
- 將記憶添加到LangChain組件中
- 自定義對(duì)話記憶與自定義記憶類
- 聊天消息記錄
- 記憶的存儲(chǔ)與應(yīng)用
- 索引(Indexes)
- 基礎(chǔ)知識(shí)
- 文檔加載器(Document Loaders)
- 文本分割器(Text Splitters)
- 向量存儲(chǔ)器(Vectorstores)
- 檢索器(Retrievers)
- 鏈(Chains)
- 基礎(chǔ)知識(shí)
- 通用功能
- 自定義Chain和Chain的異步API
- LLMChain和RouterChain
- SequentialChain和TransformationChain
- 鏈的保存(序列化)與加載(反序列化)
- 鏈與索引
- 文檔分析和基于文檔的聊天
- 問答的基礎(chǔ)知識(shí)
- 圖問答(Graph QA)和帶來源的問答(Q&A with Sources)
- 檢索式問答
- 文本摘要(Summarization)、HyDE和向量數(shù)據(jù)庫的文本生成
- 代理(Agents)
- 基礎(chǔ)知識(shí)
- 代理類型
- 自定義代理(Custom Agent)
- 自定義MRKL代理
- 帶有ChatModel的LLM聊天自定義代理和自定義多操作代理(Custom MultiAction Agent)
- 工具
- 基礎(chǔ)知識(shí)
- 自定義工具(Custom Tools)
- 多輸入工具和工具輸入模式
- 人工確認(rèn)工具驗(yàn)證和Tools作為OpenAI函數(shù)
- 工具包(Toolkit)
- 代理執(zhí)行器(Agent Executor)
- 結(jié)合使用Agent和VectorStore
- 使用Agents的異步API和創(chuàng)建ChatGPT克隆
- 處理解析錯(cuò)誤、訪問中間步驟和限制最大迭代次數(shù)
- 為代理程序設(shè)置超時(shí)時(shí)間和限制最大迭代次數(shù)和為代理程序和其工具添加共享內(nèi)存
- 計(jì)劃與執(zhí)行
- 回調(diào)函數(shù)(Callbacks)
自定義對(duì)話記憶
本節(jié)介紹了幾種自定義對(duì)話記憶的方法:
from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
llm = OpenAI(temperature=0)
AI前綴
第一種方法是通過更改對(duì)話摘要中的AI前綴來實(shí)現(xiàn)。默認(rèn)情況下,它設(shè)置為AI
,但你可以將其設(shè)置為任何你想要的內(nèi)容。需要注意的是,如果我們更改了這個(gè)前綴,我們還應(yīng)該相應(yīng)地更改鏈條中使用的提示來反映這個(gè)命名更改。讓我們通過下面的示例來演示這個(gè)過程。
# Here it is by default set to "AI"
conversation = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationBufferMemory()
)
conversation.predict(input="Hi there!")
日志輸出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI:
> Finished ConversationChain chain.
輸出:
" Hi there! It's nice to meet you. How can I help you today?"
輸入:
conversation.predict(input="What's the weather?")
日志輸出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI: Hi there! It's nice to meet you. How can I help you today?
Human: What's the weather?
AI:
> Finished ConversationChain chain.
輸出:
' The current weather is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the next few days is sunny with temperatures in the mid-70s.'
輸入:
# Now we can override it and set it to "AI Assistant"
from langchain.prompts.prompt import PromptTemplate
template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
{history}
Human: {input}
AI Assistant:"""
PROMPT = PromptTemplate(
input_variables=["history", "input"], template=template
)
conversation = ConversationChain(
prompt=PROMPT,
llm=llm,
verbose=True,
memory=ConversationBufferMemory(ai_prefix="AI Assistant")
)
conversation.predict(input="Hi there!")
日志輸出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI Assistant:
> Finished ConversationChain chain.
" Hi there! It's nice to meet you. How can I help you today?"
conversation.predict(input="What's the weather?")
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi there!
AI Assistant: Hi there! It's nice to meet you. How can I help you today?
Human: What's the weather?
AI Assistant:
> Finished ConversationChain chain.
輸出:
The current weather is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the rest of the day is sunny with a high of 78 degrees and a low of 65 degrees.'
人類前綴
第二種方法是通過更改對(duì)話摘要中的人類前綴來實(shí)現(xiàn)。默認(rèn)情況下,它設(shè)置為Human
,但我們可以將其設(shè)置為任何我們想要的內(nèi)容。需要注意的是,如果我們更改了這個(gè)前綴,我們還應(yīng)該相應(yīng)地更改鏈條中使用的提示來反映這個(gè)命名更改。讓我們通過下面的示例來演示這個(gè)過程。
# Now we can override it and set it to "Friend"
from langchain.prompts.prompt import PromptTemplate
template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
{history}
Friend: {input}
AI:"""
PROMPT = PromptTemplate(
input_variables=["history", "input"], template=template
)
conversation = ConversationChain(
prompt=PROMPT,
llm=llm,
verbose=True,
memory=ConversationBufferMemory(human_prefix="Friend")
)
conversation.predict(input="Hi there!")
日志輸出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Friend: Hi there!
AI:
> Finished ConversationChain chain.
" Hi there! It's nice to meet you. How can I help you today?"
conversation.predict(input="What's the weather?")
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Friend: Hi there!
AI: Hi there! It's nice to meet you. How can I help you today?
Friend: What's the weather?
AI:
> Finished ConversationChain chain.
輸出:
' The weather right now is sunny and warm with a temperature of 75 degrees Fahrenheit. The forecast for the rest of the day is mostly sunny with a high of 82 degrees.'
創(chuàng)建自定義記憶類
盡管在LangChain中有幾種預(yù)定義的記憶類型,但我們很可能希望添加自己的記憶類型,以使其適用于我們的應(yīng)用程序。在本節(jié)中,我們將向ConversationChain
添加一個(gè)自定義的記憶類型。為了添加自定義的記憶類,我們需要導(dǎo)入基本的記憶類并對(duì)其進(jìn)行子類化。
from langchain import OpenAI, ConversationChain
from langchain.schema import BaseMemory
from pydantic import BaseModel
from typing import List, Dict, Any
在這個(gè)示例中,我們將編寫一個(gè)自定義的記憶類,使用spacy
提取實(shí)體并將有關(guān)它們的信息保存在一個(gè)簡(jiǎn)單的哈希表中。然后,在對(duì)話過程中,我們將查看輸入文本,提取任何實(shí)體,并將關(guān)于它們的任何信息放入上下文中。需要注意的是,這種實(shí)現(xiàn)相當(dāng)簡(jiǎn)單且脆弱,可能在生產(chǎn)環(huán)境中不太有用。它的目的是展示我們可以添加自定義的記憶實(shí)現(xiàn)。為此,我們需要首先安裝spacy
。
# !pip install spacy
# !python -m spacy download en_core_web_lg
import spacy
nlp = spacy.load('en_core_web_lg')
class SpacyEntityMemory(BaseMemory, BaseModel):
"""Memory class for storing information about entities."""
# Define dictionary to store information about entities.
entities: dict = {}
# Define key to pass information about entities into prompt.
memory_key: str = "entities"
def clear(self):
self.entities = {}
@property
def memory_variables(self) -> List[str]:
"""Define the variables we are providing to the prompt."""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
"""Load the memory variables, in this case the entity key."""
# Get the input text and run through spacy
doc = nlp(inputs[list(inputs.keys())[0]])
# Extract known information about entities, if they exist.
entities = [self.entities[str(ent)] for ent in doc.ents if str(ent) in self.entities]
# Return combined information about entities to put into context.
return {self.memory_key: "\n".join(entities)}
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Save context from this conversation to buffer."""
# Get the input text and run through spacy
text = inputs[list(inputs.keys())[0]]
doc = nlp(text)
# For each entity that was mentioned, save this information to the dictionary.
for ent in doc.ents:
ent_str = str(ent)
if ent_str in self.entities:
self.entities[ent_str] += f"\n{text}"
else:
self.entities[ent_str] = text
我們現(xiàn)在定義一個(gè)提示,其中包含有關(guān)實(shí)體的信息以及用戶的輸入:
from langchain.prompts.prompt import PromptTemplate
template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.
Relevant entity information:
{entities}
Conversation:
Human: {input}
AI:"""
prompt = PromptTemplate(
input_variables=["entities", "input"], template=template
)
現(xiàn)在,我們把它們整合起來:
llm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, prompt=prompt, verbose=True, memory=SpacyEntityMemory())
在第一個(gè)例子中,由于對(duì)Harrison沒有先前的了解,"Relevant entity information"部分是空的:
conversation.predict(input="Harrison likes machine learning")
日志輸出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.
Relevant entity information:
Conversation:
Human: Harrison likes machine learning
AI:
> Finished ConversationChain chain.
輸出:
" That's great to hear! Machine learning is a fascinating field of study. It involves using algorithms to analyze data and make predictions. Have you ever studied machine learning, Harrison?"
現(xiàn)在在第二個(gè)例子中,我們可以看到它提取了關(guān)于Harrison的信息。
conversation.predict(input="What do you think Harrison's favorite subject in college was?")
日志輸出:
> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.
Relevant entity information:
Harrison likes machine learning
Conversation:
Human: What do you think Harrison's favorite subject in college was?
AI:
> Finished ConversationChain chain.
輸出:
' From what I know about Harrison, I believe his favorite subject in college was machine learning. He has expressed a strong interest in the subject and has mentioned it often.'
這個(gè)實(shí)現(xiàn)方式相對(duì)簡(jiǎn)單且容易出錯(cuò),可能在實(shí)際生產(chǎn)環(huán)境中沒有太大的用途,但它展示了我們可以添加自定義的內(nèi)存實(shí)現(xiàn)方式。文章來源:http://www.zghlxwxcb.cn/news/detail-648286.html
參考文獻(xiàn):
[1] LangChain官方網(wǎng)站:https://www.langchain.com/
[2] LangChain ????? 中文網(wǎng),跟著LangChain一起學(xué)LLM/GPT開發(fā):https://www.langchain.com.cn/
[3] LangChain中文網(wǎng) - LangChain 是一個(gè)用于開發(fā)由語言模型驅(qū)動(dòng)的應(yīng)用程序的框架:http://www.cnlangchain.com/文章來源地址http://www.zghlxwxcb.cn/news/detail-648286.html
到了這里,關(guān)于自然語言處理從入門到應(yīng)用——LangChain:記憶(Memory)-[自定義對(duì)話記憶與自定義記憶類]的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!