機器學習中的工作流機制
在項目開發(fā)的時候,經(jīng)常需要我們選擇使用哪一種模型。同樣的數(shù)據(jù),可能決策樹效果不錯,樸素貝葉斯也不錯,SVM也挺好。有沒有一種方法能夠讓我們用一份數(shù)據(jù),同時訓練多個模型,并用某種直觀的方式(包括模型得分),觀察到模型在既有數(shù)據(jù)上的效果?有的,管線工作流pipeline就是專門干這個的,再配上決策邊界,所有模型只用一眼,就能確定優(yōu)劣,選擇你的夢中情模。上效果圖。
分為兩行,上面是sklearn自帶數(shù)據(jù)集中的數(shù)據(jù),分兩類。從第二列開始,每一列是某種模型在當前數(shù)據(jù)集中的擬合效果。如何查看某種模型效果好壞?從兩個方面,左上角的模型得分,和圖中顏色深淺,兩種顏色的分解代表模型的決策邊界。
下面是筆者自己的數(shù)據(jù),分為4類。同樣不同顏色的分界代表兩種類型的判別邊界。如果只看模型得分,那得分為100%的模型有5個,選再根據(jù)決策邊界進一步確定更優(yōu)秀的模型,為工程所用。這里貼出筆者所用代碼供各位修改,也可以直接取官方代碼修改
def loadTrainData():
df = pd.read_csv('./your/dataset/path/data.csv')
trainDataLabel = df.values
nodeData = trainDataLabel[:, :2], trainDataLabel[:, -1]
return nodeData
def trainAnalySave():
from matplotlib.colors import ListedColormap
import joblib
from sklearn.datasets import make_circles, make_classification, make_moons
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
names = [
"Nearest Neighbors",
"Linear SVM",
"RBF SVM",
"Gaussian Process",
"Decision Tree",
"Random Forest",
"Neural Net",
"AdaBoost",
"Naive Bayes",
"QDA",
]
classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
GaussianProcessClassifier(1.0 * RBF(1.0)),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
MLPClassifier(alpha=1, max_iter=1000),
AdaBoostClassifier(),
GaussianNB(),
QuadraticDiscriminantAnalysis(),
]
# X, y = make_classification(
# n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1
# )
# rng = np.random.RandomState(2)
# X += 2 * rng.uniform(size=X.shape)
# linearly_separable = (X, y)
nodeData = loadTrainData()
datasets = [
# make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
# linearly_separable,
nodeData,
]
# figure = plt.figure(figsize=(27, 9))
figure = plt.figure(figsize=(15, 4))
i = 1
# iterate over datasets
for ds_cnt, ds in enumerate(datasets):
# preprocess dataset, split into training and test part
X, y = ds
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.4, random_state=42
)
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
# just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(["#FF0000", "#00FF00", "#FFFF00", "#0000FF"])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
if ds_cnt == 0:
ax.set_title("Input data")
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k")
# Plot the testing points
ax.scatter(
X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k"
)
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_xticks(())
ax.set_yticks(())
i += 1
# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf = make_pipeline(StandardScaler(), clf)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
# DecisionBoundaryDisplay.from_estimator(
# clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5
# )
# save satisfied model
savedPath = r'..\models\sklearn\\'
savedList = ["Nearest Neighbors", "RBF SVM", "Neural Net"]
if name in savedList:
joblib.dump(clf, savedPath + name + '.pkl')
# Plot the training points
ax.scatter(
X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k"
)
# Plot the testing points
ax.scatter(
X_test[:, 0],
X_test[:, 1],
c=y_test,
cmap=cm_bright,
edgecolors="k",
alpha=0.6,
)
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_xticks(())
ax.set_yticks(())
if ds_cnt == 0:
ax.set_title(name)
ax.text(
# x_max - 0.3,
# y_min + 0.3,
x_min + 0.4,
y_max - 0.4 - ds_cnt,
("%.2f" % score),
# ("%.2f" % score).lstrip("0"),
# size=15,
size=10,
# horizontalalignment="right",
horizontalalignment="left",
)
i += 1
plt.tight_layout()
plt.show()
nodeData = loadTrainData()
if __name__ == '__main__':
trainAnalySave()
注意,這里的DecisionBoundaryDisplay模塊,需要安裝sklearn的較新版本,因而python也需要較高版本。文章來源:http://www.zghlxwxcb.cn/news/detail-625441.html
最后打個廣告,如果有想進修服務器開發(fā)相關的技能,這里是可以讓你秒變大神的時光隧道。 enjoy~~文章來源地址http://www.zghlxwxcb.cn/news/detail-625441.html
到了這里,關于機器學習中的工作流機制的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網(wǎng)!