国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

Ubuntu20.04安裝Kinect2驅(qū)動(dòng)libfreenect2以及對(duì)應(yīng)的ros功能包iai_kinect2(解決編譯報(bào)錯(cuò))

這篇具有很好參考價(jià)值的文章主要介紹了Ubuntu20.04安裝Kinect2驅(qū)動(dòng)libfreenect2以及對(duì)應(yīng)的ros功能包iai_kinect2(解決編譯報(bào)錯(cuò))。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問(wèn)。

本人平臺(tái):nuc11-1165g7 Intel Xe Graphics

一.安裝libfreenect2:

地址:https://github.com/OpenKinect/libfreenect2

1.安裝libusb. The version must be >= 1.0.20:

sudo apt install -y libusb-1.0-0-dev

2.安裝TurboJPEG:

sudo apt install -y libturbojpeg libjpeg-turbo8-dev libturbojpeg0-dev

3.安裝OpenGL:

sudo apt install -y libglfw3-dev
sudo apt install -y libgl1-mesa-dev
sudo apt install -y libglu1-mesa-dev
sudo apt install -y freeglut3-dev
sudo apt install -y libglew1.8 libglew-dev
sudo apt install -y libgl1-mesa-glx
sudo apt install -y libxmu-dev

4.安裝OpenNI2:

sudo apt install -y libopenni2-dev openni2-utils

5.安裝OpenCL的頭文件和庫(kù):

根據(jù)這篇文章(本人的流程有所不同):Ubuntu 16.04.2 下為 Intel 顯卡啟用 OpenCL

1) 首先,安裝官方的包:
sudo apt install ocl-icd-libopencl1
sudo apt install opencl-headers
sudo apt install clinfo
sudo apt install ocl-icd-opencl-dev
sudo apt install beignet-dev

其中clinfo是用來(lái)看系統(tǒng)opencl支持情況的,對(duì)于我11代Intel銳炬核顯,Intel專(zhuān)用的opencl庫(kù)就是beignet-dev(20.04,如果你是18.04這個(gè)包名是beignet),如果你不安裝這個(gè)包,終端輸入clinfo回車(chē)是會(huì)告訴你沒(méi)有匹配的設(shè)備的,只有安裝了這個(gè)包,才會(huì)檢測(cè)到opencl。
雖然libfreenect2倉(cāng)庫(kù)里的自述文件說(shuō)opencl-headers對(duì)應(yīng)AMD核心顯卡,但是教程讓我安我就安了,無(wú)所謂。

2) 接著下載官方的驅(qū)動(dòng):

https://software.intel.com/en-us/articles/opencl-drivers#latest_linux_SDK_release

??!從這之后跟教程不太一樣?。?/h6>
3) 進(jìn)入Intel官方OpenCL倉(cāng)庫(kù):

https://github.com/intel/compute-runtime/releases

下面這一套安裝官方OpenCL的流程就在它倉(cāng)庫(kù)的自述文件里,隨著庫(kù)的更新命令可能會(huì)變化,建議伙伴們還是去它的倉(cāng)庫(kù)里按照它自己的流程走一遍命令

4) 創(chuàng)建一個(gè)暫時(shí)文件夾:
mkdir neo
5) 下載所有的deb包:
cd neo
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.13230.7/intel-igc-core_1.0.13230.7_amd64.deb
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.13230.7/intel-igc-opencl_1.0.13230.7_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/23.05.25593.11/intel-level-zero-gpu-dbgsym_1.3.25593.11_amd64.ddeb
wget https://github.com/intel/compute-runtime/releases/download/23.05.25593.11/intel-level-zero-gpu_1.3.25593.11_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/23.05.25593.11/intel-opencl-icd-dbgsym_23.05.25593.11_amd64.ddeb
wget https://github.com/intel/compute-runtime/releases/download/23.05.25593.11/intel-opencl-icd_23.05.25593.11_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/23.05.25593.11/libigdgmm12_22.3.0_amd64.deb
6)驗(yàn)證包的 sha256 總和:
wget https://github.com/intel/compute-runtime/releases/download/23.05.25593.11/ww05.sum
sha256sum -c ww05.sum
7) 安裝所有包:
sudo dpkg -i *.deb
8) OpenCL安裝結(jié)束(over)---------------------------------------------------------------------------------------

6.安裝VAAPI (節(jié)選,只適用于intel,親測(cè)安了之后,運(yùn)行可執(zhí)行文件就運(yùn)行段錯(cuò)誤,在此不給指令了)

7.安裝一些其他的不知道啥用的包:

sudo apt install -y mesa-common-dev libxrandr-dev libxi-dev 

8.檢查一下安裝的環(huán)境:

1) 檢查OpenCL:
clinfo

彈出:

Number of platforms                               1
  Platform Name                                   Intel(R) OpenCL HD Graphics
  Platform Vendor                                 Intel(R) Corporation
  Platform Version                                OpenCL 3.0 
  Platform Profile                                FULL_PROFILE
  Platform Extensions                             cl_khr_byte_addressable_store cl_khr_device_uuid cl_khr_fp16 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_icd cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_intel_command_queue_families cl_intel_subgroups cl_intel_required_subgroup_size cl_intel_subgroups_short cl_khr_spir cl_intel_accelerator cl_intel_driver_diagnostics cl_khr_priority_hints cl_khr_throttle_hints cl_khr_create_command_queue cl_intel_subgroups_char cl_intel_subgroups_long cl_khr_il_program cl_intel_mem_force_host_memory cl_khr_subgroup_extended_types cl_khr_subgroup_non_uniform_vote cl_khr_subgroup_ballot cl_khr_subgroup_non_uniform_arithmetic cl_khr_subgroup_shuffle cl_khr_subgroup_shuffle_relative cl_khr_subgroup_clustered_reduce cl_intel_device_attribute_query cl_khr_suggested_local_work_size cl_intel_split_work_group_barrier cl_intel_spirv_media_block_io cl_intel_spirv_subgroups cl_khr_spirv_no_integer_wrap_decoration cl_intel_unified_shared_memory cl_khr_mipmap_image cl_khr_mipmap_image_writes cl_intel_planar_yuv cl_intel_packed_yuv cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_image2d_from_buffer cl_khr_depth_images cl_khr_3d_image_writes cl_intel_media_block_io cl_intel_va_api_media_sharing cl_intel_sharing_format_query cl_khr_pci_bus_info cl_intel_subgroup_local_block_io 
  Platform Host timer resolution                  1ns
  Platform Extensions function suffix             INTEL

  Platform Name                                   Intel(R) OpenCL HD Graphics
Number of devices                                 1
  Device Name                                     Intel(R) Iris(R) Xe Graphics
  Device Vendor                                   Intel(R) Corporation
  Device Vendor ID                                0x8086
  Device Version                                  OpenCL 3.0 NEO 
  Driver Version                                  23.05.25593.11
  Device OpenCL C Version                         OpenCL C 1.2 
  Device Type                                     GPU
  Device Profile                                  FULL_PROFILE
  Device Available                                Yes
  Compiler Available                              Yes
  Linker Available                                Yes
  Max compute units                               96
  Max clock frequency                             1300MHz
  Device Partition                                (core)
    Max number of sub-devices                     0
    Supported partition types                     None
    Supported affinity domains                    (n/a)
  Max work item dimensions                        3
  Max work item sizes                             512x512x512
  Max work group size                             512
  Preferred work group size multiple              64
  Max sub-groups per work group                   64
  Sub-group sizes (Intel)                         8, 16, 32
  Preferred / native vector sizes                 
    char                                                16 / 16      
    short                                                8 / 8       
    int                                                  4 / 4       
    long                                                 1 / 1       
    half                                                 8 / 8        (cl_khr_fp16)
    float                                                1 / 1       
    double                                               0 / 0        (n/a)
  Half-precision Floating-point support           (cl_khr_fp16)
    Denormals                                     Yes
    Infinity and NANs                             Yes
    Round to nearest                              Yes
    Round to zero                                 Yes
    Round to infinity                             Yes
    IEEE754-2008 fused multiply-add               Yes
    Support is emulated in software               No
  Single-precision Floating-point support         (core)
    Denormals                                     Yes
    Infinity and NANs                             Yes
    Round to nearest                              Yes
    Round to zero                                 Yes
    Round to infinity                             Yes
    IEEE754-2008 fused multiply-add               Yes
    Support is emulated in software               No
    Correctly-rounded divide and sqrt operations  No
  Double-precision Floating-point support         (n/a)
  Address bits                                    64, Little-Endian
  Global memory size                              13207846912 (12.3GiB)
  Error Correction support                        No
  Max memory allocation                           4294959104 (4GiB)
  Unified memory for Host and Device              Yes
  Shared Virtual Memory (SVM) capabilities        (core)
    Coarse-grained buffer sharing                 Yes
    Fine-grained buffer sharing                   No
    Fine-grained system sharing                   No
    Atomics                                       No
  Minimum alignment for any data type             128 bytes
  Alignment of base address                       1024 bits (128 bytes)
  Preferred alignment for atomics                 
    SVM                                           64 bytes
    Global                                        64 bytes
    Local                                         64 bytes
  Max size for global variable                    65536 (64KiB)
  Preferred total size of global vars             4294959104 (4GiB)
  Global Memory cache type                        Read/Write
  Global Memory cache size                        3932160 (3.75MiB)
  Global Memory cache line size                   64 bytes
  Image support                                   Yes
    Max number of samplers per kernel             16
    Max size for 1D images from buffer            268434944 pixels
    Max 1D or 2D image array size                 2048 images
    Base address alignment for 2D image buffers   4 bytes
    Pitch alignment for 2D image buffers          4 pixels
    Max 2D image size                             16384x16384 pixels
    Max planar YUV image size                     16384x16352 pixels
    Max 3D image size                             2048x2048x2048 pixels
    Max number of read image args                 128
    Max number of write image args                128
    Max number of read/write image args           128
  Max number of pipe args                         0
  Max active pipe reservations                    0
  Max pipe packet size                            0
  Local memory type                               Local
  Local memory size                               65536 (64KiB)
  Max number of constant args                     8
  Max constant buffer size                        4294959104 (4GiB)
  Max size of kernel argument                     2048 (2KiB)
  Queue properties (on host)                      
    Out-of-order execution                        Yes
    Profiling                                     Yes
  Queue properties (on device)                    
    Out-of-order execution                        No
    Profiling                                     No
    Preferred size                                0
    Max size                                      0
  Max queues on device                            0
  Max events on device                            0
  Prefer user sync for interop                    Yes
  Profiling timer resolution                      52ns
  Execution capabilities                          
    Run OpenCL kernels                            Yes
    Run native kernels                            No
    Sub-group independent forward progress        No
    IL version                                    SPIR-V_1.2 
    SPIR versions                                 1.2 
  printf() buffer size                            4194304 (4MiB)
  Built-in kernels                                (n/a)
  Device Extensions                               cl_khr_byte_addressable_store cl_khr_device_uuid cl_khr_fp16 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_icd cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_intel_command_queue_families cl_intel_subgroups cl_intel_required_subgroup_size cl_intel_subgroups_short cl_khr_spir cl_intel_accelerator cl_intel_driver_diagnostics cl_khr_priority_hints cl_khr_throttle_hints cl_khr_create_command_queue cl_intel_subgroups_char cl_intel_subgroups_long cl_khr_il_program cl_intel_mem_force_host_memory cl_khr_subgroup_extended_types cl_khr_subgroup_non_uniform_vote cl_khr_subgroup_ballot cl_khr_subgroup_non_uniform_arithmetic cl_khr_subgroup_shuffle cl_khr_subgroup_shuffle_relative cl_khr_subgroup_clustered_reduce cl_intel_device_attribute_query cl_khr_suggested_local_work_size cl_intel_split_work_group_barrier cl_intel_spirv_media_block_io cl_intel_spirv_subgroups cl_khr_spirv_no_integer_wrap_decoration cl_intel_unified_shared_memory cl_khr_mipmap_image cl_khr_mipmap_image_writes cl_intel_planar_yuv cl_intel_packed_yuv cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_image2d_from_buffer cl_khr_depth_images cl_khr_3d_image_writes cl_intel_media_block_io cl_intel_va_api_media_sharing cl_intel_sharing_format_query cl_khr_pci_bus_info cl_intel_subgroup_local_block_io 

NULL platform behavior
  clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...)  Intel(R) OpenCL HD Graphics
  clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...)   Success [INTEL]
  clCreateContext(NULL, ...) [default]            Success [INTEL]
  clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT)  Success (1)
    Platform Name                                 Intel(R) OpenCL HD Graphics
    Device Name                                   Intel(R) Iris(R) Xe Graphics
  clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU)  No devices found in platform
  clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU)  Success (1)
    Platform Name                                 Intel(R) OpenCL HD Graphics
    Device Name                                   Intel(R) Iris(R) Xe Graphics
  clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR)  No devices found in platform
  clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM)  No devices found in platform
  clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL)  Success (1)
    Platform Name                                 Intel(R) OpenCL HD Graphics
    Device Name                                   Intel(R) Iris(R) Xe Graphics

ICD loader properties
  ICD loader Name                                 OpenCL ICD Loader
  ICD loader Vendor                               OCL Icd free software
  ICD loader Version                              2.2.11
  ICD loader Profile                              OpenCL 2.1
	NOTE:	your OpenCL library only supports OpenCL 2.1,
		but some installed platforms support OpenCL 3.0.
		Programs using 3.0 features may crash
		or behave unexpectedly

2) 檢查OpenGL:
glxinfo | grep OpenGL

彈出:

OpenGL vendor string: Intel
OpenGL renderer string: Mesa Intel(R) Xe Graphics (TGL GT2)
OpenGL core profile version string: 4.6 (Core Profile) Mesa 21.2.6
OpenGL core profile shading language version string: 4.60
OpenGL core profile context flags: (none)
OpenGL core profile profile mask: core profile
OpenGL core profile extensions:
OpenGL version string: 4.6 (Compatibility Profile) Mesa 21.2.6
OpenGL shading language version string: 4.60
OpenGL context flags: (none)
OpenGL profile mask: compatibility profile
OpenGL extensions:
OpenGL ES profile version string: OpenGL ES 3.2 Mesa 21.2.6
OpenGL ES profile shading language version string: OpenGL ES GLSL ES 3.20
OpenGL ES profile extensions:

9.編譯libfreenect2:

cmake里一些要修改的默認(rèn)參數(shù)列出來(lái)了

cd libfreenect2

mkdir build && cd build

cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/freenect2 -DBUILD_PYTHON3=ON -DENABLE_CXX11=ON -DENABLE_VAAPI=OFF

make -j8

sudo make install
1) 安裝結(jié)束
2) 拔下kinect2的電源或者USB
3) 修改libfreenect2/platform/linux/udev/90-kinect2.rules文件中的USB權(quán)限:

把所有0666,修改為0777,即最高權(quán)限。

4) 將kinect2的rules文件拷貝到udev目錄下(build文件夾下open terminal):
sudo cp ../platform/linux/udev/90-kinect2.rules /etc/udev/rules.d/

10.測(cè)試libfreenect2:

重新插上設(shè)備后,我按照l(shuí)ibfreenect2倉(cāng)庫(kù)和iai_kinect2里的測(cè)試方法嘗試:

# 在build路徑下
./bin/Protonect
./bin/Protonect gl
./bin/Protonect cpu
./bin/Protonect cl

四個(gè)框都有圖像就問(wèn)題不大

二.安裝iai_kinect2:

地址:https://github.com/code-iai/iai_kinect2.git
或者:https://gitcode.net/mirrors/code-iai/iai_kinect2

1.安裝依賴(PCL、eigen3):

sudo apt install libeigen3-dev libeigen3-doc pcl-tools

把iai_kinect2包放到已經(jīng)添加到環(huán)境變量的ROS工作空間下,然后

2.檢查依賴(用官方倉(cāng)庫(kù)的指令會(huì)彈錯(cuò)):

rosdep install --from-paths /你自己的工作空間路徑/src/iai_kinect2 --ignore-src -r

3.運(yùn)行cmake:

這里freenect2_DIR參數(shù)最好自己指定
我這里指定了是因?yàn)槲仪懊姘惭blibfreenect2的時(shí)候指定了make install路徑

catkin_make -DCMAKE_BUILD_TYPE="Release" -Dfreenect2_DIR=$HOME/freenect2/lib/cmake/freenect2 -DENABLE_CXX11=ON

4.編譯:

catkin_make

不要擔(dān)心,你肯定會(huì)報(bào)錯(cuò)

5.編譯iai_kinect2最重要的事!?。。。?!

貼一個(gè)我已經(jīng)修改過(guò)的包(在我自己的硬件環(huán)境和軟件環(huán)境下):

鏈接: https://pan.baidu.com/s/1mb1GMAic2L5pK0j6SAp7Pg?pwd=5sqw
提取碼: 5sqw

1) kinect2_bridge/CMakeLists.txt:

find_package(freenect2 REQUIRED HINTS "$ENV{HOME}/freenect2")

在其中我們能看見(jiàn)這個(gè)ros包默認(rèn)make install出來(lái)的freenect2文件夾路徑${HOME}/freenect2,對(duì)應(yīng)前面的cmake -D參數(shù)

2) 本人編譯過(guò)程中遇到的紅色bug:

注意:需要修改這個(gè)包的源文件和cmake文件,最好用vscode打開(kāi)iai_kinect2文件夾
注意:以下任何一個(gè)問(wèn)題,修改了源文件以后,都要重新編譯

(1) PCL庫(kù)有關(guān)的各種error:

這個(gè)問(wèn)題在kinect2_viewer文件夾下的CMakeLists.txt中,它尋找PCL包沒(méi)有找到正確的位置,我在find_package(OpenMP)這行代碼下增加其絕對(duì)路徑

set(PCL_DIR /usr/include/pcl-1.10/pcl)
find_package(PCL REQUIRED)
include_directories(${PCL_INCLUDE_DIRS})

(2) CXX14 error:

同樣是在kinect2_viewer文件夾下的CMakeLists.txt中,
在開(kāi)頭,把CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11)
改成CHECK_CXX_COMPILER_FLAG("-std=c++14" COMPILER_SUPPORTS_CXX14)
后面的一句也改為SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14")

(3) OpenCV各種宏定義找不到:

我直接一把梭,把所有include了opencv的cpp文件都添加了同樣的庫(kù)文件(用的裝ros自動(dòng)安裝的opencv4.3)
添加

#include <opencv2/imgproc/types_c.h>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/imgcodecs/legacy/constants_c.h>
#include <opencv2/highgui/highgui.hpp>

kinect2_bridge/src/kinect2_bridge.cpp
kinect2_calibration/src/kinect2_calibration.cpp
kinect2_viewer/src/viewer.cpp

這些文件的include中

(4) 運(yùn)行kinect2_bridge.launch報(bào)OpenCL registration is not available!的錯(cuò)誤:

這個(gè)問(wèn)題在iai_kinect2的issue里有人提到,是浮點(diǎn)數(shù)的問(wèn)題
這里就是為什么要用vscode打開(kāi)的原因,因?yàn)檫@個(gè)問(wèn)題是在kinect2_registration/src/depth_registration.cl文件里被造成的
我使用vscode打開(kāi)后,會(huì)提示你安裝opencl有關(guān)的插件,安裝完后,會(huì)給這個(gè)cl文件以高亮,
雖然issue中有人說(shuō)只需要修改文件最后那幾行中const float4 tmp = (float4)(sqrt(2.0));這段代碼為const float4 tmp = (float4)(sqrt(2.0f));
但我還是把所有插件提示出的所有未加f后綴的浮點(diǎn)數(shù)都加上了f后綴,然后再重新catkin_make就好了。

但是,如果你不想用或者用不了OpenCL,你可以打開(kāi)kinect2_bridge/launch/kinect2_bridge.launch文件
修改其中的一個(gè)參數(shù)<arg name="reg_method" default="default"/><arg name="reg_method" default="cpu"/>

也就是不使用OpenCL而是使用CPU。

三.測(cè)試iai_kinect2:

roslaunch kinect2_bridge kinect2_bridge.launch #連接傳感器
rosrun kinect2_viewer kinect2_viewer kinect2 sd image #查看圖像
rosrun kinect2_viewer kinect2_viewer kinect2 sd cloud #查看點(diǎn)云

如果都能正常打開(kāi),就說(shuō)明沒(méi)問(wèn)題了。

四.用iai_kinect2標(biāo)定:

遇見(jiàn)了,顏色和紅外標(biāo)定完,標(biāo)定pose的時(shí)候輸出值全為0的bug
這個(gè)bug在倉(cāng)庫(kù)的pr中被修改了:https://github.com/cbuchxrn/iai_kinect2_opencv4/commit/7123381392f2524f1f85713bb92ab1f2e768190f#diff-7f37e052948300fc492ebf0563b4630d3bdadfcf28020fb7d5e16c833994402c
可以搜這個(gè)標(biāo)題:Added cam calibration and made changes to use with opencv4

暫時(shí)是用matlab那個(gè)工具箱標(biāo)定了rgb相機(jī),標(biāo)定了好幾次,重影問(wèn)題還是很?chē)?yán)重。

五.修改kinect2_bridge在rviz中顯示的點(diǎn)云為垂直于xz平面的(僅在kinect2_link下生效):

用vscode打開(kāi)kinect2_bridge.cpp文件,查找setRPY,這個(gè)函數(shù)是設(shè)置kinect2_link的初始位姿的,將qZero.setRPY(0,0,0)改為qZero.setRPY(M_PI/2, M_PI, 0);catkin_make然后運(yùn)行kinect2_bridge.launch選中kinect2_link坐標(biāo)系,就能看到點(diǎn)云已經(jīng)轉(zhuǎn)過(guò)來(lái)了,我也想修改其它坐標(biāo)系下的點(diǎn)云位姿,但是稍微修改以下上面的那個(gè)rot變量,kinect2_link坐標(biāo)系下的sd點(diǎn)云也會(huì)跟著變化,故放棄修改其它坐標(biāo)系下的點(diǎn)云位姿了。文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-546793.html

六.結(jié)束

到了這里,關(guān)于Ubuntu20.04安裝Kinect2驅(qū)動(dòng)libfreenect2以及對(duì)應(yīng)的ros功能包iai_kinect2(解決編譯報(bào)錯(cuò))的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來(lái)自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場(chǎng)。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • 【Ubuntu】Ubuntu20.04安裝GPU顯卡驅(qū)動(dòng)

    【Ubuntu】Ubuntu20.04安裝GPU顯卡驅(qū)動(dòng)

    等待安裝即可 有些顯卡只支持455 安裝完成記得重啟一下,然后驗(yàn)證一下: 若顯示下圖則說(shuō)明安裝成功~? ? CUDA Toolkit 11.7 Downloads | NVIDIA Developer 選擇Linux-x86_64-Ubuntu-20.04-runfile(local) ? 等待30m即可(取決于網(wǎng)速)? ?選擇Continue(上下移動(dòng)選擇,Enter確定) ?輸入 accept ? 在對(duì)應(yīng)的

    2024年02月01日
    瀏覽(26)
  • Ubuntu20.04 安裝 NVIDIA 顯卡驅(qū)動(dòng)

    Ubuntu20.04 安裝 NVIDIA 顯卡驅(qū)動(dòng)

    說(shuō)明:本人使用的環(huán)境是Ubuntu20.04, GTX1060 1. 安裝驅(qū)動(dòng)前一定要更新軟件列表和安裝必要軟件、依賴 sudo apt-get update #更新軟件列表 sudo apt-get install g++ sudo apt-get install gcc sudo apt-get install make 2. 查詢硬件(顯卡)信息 lspci | grep -Ei \\\'(vga|display)\\\' 或者 lspci | grep -i nvidia 或者 lspci | grep -

    2024年01月23日
    瀏覽(93)
  • ubuntu20.04使用微軟Azure Kinect DK 實(shí)現(xiàn)三維重建demo記錄

    ubuntu20.04使用微軟Azure Kinect DK 實(shí)現(xiàn)三維重建demo記錄

    本文僅為在ubuntu20.04實(shí)現(xiàn)Azure Kinect DK 三維重建demo,此文記錄實(shí)現(xiàn)過(guò)程僅供學(xué)習(xí),同時(shí)為大家避坑,文中參考大量文章已列至末尾。 1 ros安裝 2 安裝微軟 DK的sdk 3 ros之AzureKinect驅(qū)動(dòng) 4 Azure Kinect DK 點(diǎn)云和RGBD圖的獲取 5 conda安裝 6 Kinect DK 實(shí)現(xiàn)三維重建 1.1 安裝源,添加sources.list 1

    2024年02月07日
    瀏覽(88)
  • Ubuntu20.04、22.04安裝nvidia顯卡驅(qū)動(dòng)

    Ubuntu20.04、22.04安裝nvidia顯卡驅(qū)動(dòng)

    資料1 https://huazhe1995.github.io/2020/01/01/ubuntu-an-zhuang-nvidia-qu-dong-run-fang-shi/ 資料2 https://blog.csdn.net/qq_51963216/article/details/124194096 資料3 https://blog.csdn.net/Perfect886/article/details/119109380 步驟: 1 1.安裝驅(qū)動(dòng)前一定要更新軟件列表和安裝必要軟件、依賴(必須) 2.查看GPU型號(hào) (你自己知道

    2024年02月06日
    瀏覽(26)
  • Ubuntu20.04安裝Nvidia顯卡驅(qū)動(dòng)教程

    Ubuntu20.04安裝Nvidia顯卡驅(qū)動(dòng)教程

    nouveau是Ubuntu自帶的顯卡驅(qū)動(dòng),但他是核顯,我這里想安裝獨(dú)顯,就得把他禁掉。 1、創(chuàng)建文件,如果沒(méi)有下載vim編輯器,將vim換成gedit即可 2、在文件中插入以下內(nèi)容,將nouveau加入黑名單,默認(rèn)不開(kāi)啟 3、輸入以下命令使禁用生效然后重啟 4、重啟后驗(yàn)證 如果回車(chē)后無(wú)反應(yīng),則

    2024年02月07日
    瀏覽(62)
  • 【記錄】ubuntu20.04安裝nvidia顯卡驅(qū)動(dòng)

    【記錄】ubuntu20.04安裝nvidia顯卡驅(qū)動(dòng)

    新安裝的Ubuntu20.04系統(tǒng),如果想進(jìn)行人工智能相關(guān)的學(xué)習(xí),需要配置一系列的環(huán)境,這里我記錄下具體的安裝過(guò)程。 Nvidia顯卡驅(qū)動(dòng)的安裝 1 安裝前需要安裝依賴(必須執(zhí)行) 2 查看自己的GPU型號(hào),這個(gè)如果自己知道,其實(shí)沒(méi)必要,如果不確定,可以用下面的命令進(jìn)行查看 3 Nvid

    2024年02月13日
    瀏覽(48)
  • Ubuntu20.04無(wú)線網(wǎng)卡驅(qū)動(dòng)安裝

    Ubuntu20.04無(wú)線網(wǎng)卡驅(qū)動(dòng)安裝

    UbuntuU盤(pán)啟動(dòng)盤(pán)安裝好Ubuntu 20.04之后,發(fā)現(xiàn)沒(méi)有無(wú)線網(wǎng)絡(luò),不過(guò)有線可以用。 比較簡(jiǎn)單的就是直接拉一條網(wǎng)線進(jìn)行連接,如果沒(méi)有網(wǎng)線,有另外一臺(tái)帶無(wú)線的電腦也可以 進(jìn)入設(shè)置 選擇更改適配器設(shè)置 選擇連上的無(wú)線網(wǎng)絡(luò),右鍵選擇屬性 選擇共享,勾線允許其他網(wǎng)絡(luò),點(diǎn)擊確

    2023年04月11日
    瀏覽(18)
  • 記錄Ubuntu20.04系統(tǒng)安裝后立刻安裝無(wú)線網(wǎng)驅(qū)動(dòng)

    記錄Ubuntu20.04系統(tǒng)安裝后立刻安裝無(wú)線網(wǎng)驅(qū)動(dòng)

    ubuntu安裝無(wú)線網(wǎng)卡驅(qū)動(dòng) 查看電腦對(duì)應(yīng)版本的網(wǎng)卡型號(hào) 查找驅(qū)動(dòng)及對(duì)應(yīng)內(nèi)核版本 安裝驅(qū)動(dòng) 我的電腦顯卡為RTX 3070Ti。在安裝好Ubuntu20.04系統(tǒng)后,因?yàn)槭晴R像安裝,遇到過(guò)兩種情況: 安裝的系統(tǒng)內(nèi)核為5.13.0(不自帶無(wú)線網(wǎng)卡驅(qū)動(dòng)),Settings沒(méi)有WIFI。 安裝的系統(tǒng)內(nèi)核為5.15.0(自帶

    2024年02月16日
    瀏覽(40)
  • 【Ubuntu20.04安裝Nvidia驅(qū)動(dòng)、CUDA和CUDNN】

    【Ubuntu20.04安裝Nvidia驅(qū)動(dòng)、CUDA和CUDNN】

    官網(wǎng)鏈接:https://www.nvidia.cn/Download/index.aspx?lang=cn 或者h(yuǎn)ttps://www.nvidia.cn/geforce/drivers/ 注 :Ubuntu系統(tǒng)是不區(qū)別顯卡類(lèi)別的顯卡驅(qū)動(dòng),一般來(lái)說(shuō),下載最新版本的驅(qū)動(dòng)即可;Win系統(tǒng)是需要根據(jù)顯卡來(lái)選擇具體的驅(qū)動(dòng)版本。 1.2.1 NVIDIA 驅(qū)動(dòng)與 Nouveau 驅(qū)動(dòng)不兼容 由于系統(tǒng)當(dāng)前正在使用

    2024年02月11日
    瀏覽(27)
  • ubuntu 20.04 4090 顯卡驅(qū)動(dòng)安裝 深度學(xué)習(xí)環(huán)境配置

    ubuntu 20.04 4090 顯卡驅(qū)動(dòng)安裝 深度學(xué)習(xí)環(huán)境配置

    準(zhǔn)備工作: 換源 安裝輸入法:重啟的步驟先不管(自選) sudo apt update sudo apt upgrade 禁用nouveau驅(qū)動(dòng)(這個(gè)驅(qū)動(dòng)是ubuntu開(kāi)源小組逆向破解NVIDIA的開(kāi)源驅(qū)動(dòng),與英偉達(dá)的原有驅(qū)動(dòng)不兼容)執(zhí)行完第2.3步,先不重啟。 打開(kāi) 軟件和更新 , 選擇 附加驅(qū)動(dòng),安裝推薦驅(qū)動(dòng)(第一個(gè)),點(diǎn)

    2024年02月16日
    瀏覽(33)

覺(jué)得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包