源碼或數(shù)據(jù)集請點(diǎn)贊關(guān)注收藏后評論區(qū)留言或者私信博主要
由于獨(dú)特的設(shè)計(jì)結(jié)構(gòu) LSTM適合于處理和預(yù)測時(shí)間序列中間隔和延遲非常長的重要事件。
LSTM是一種含有LSTM區(qū)塊(blocks)或其他的一種類神經(jīng)網(wǎng)絡(luò),文獻(xiàn)或其他資料中LSTM區(qū)塊可能被描述成智能網(wǎng)絡(luò)單元,因?yàn)樗梢杂洃洸欢〞r(shí)間長度的數(shù)值,區(qū)塊中有一個(gè)gate能夠決定input是否重要到能被記住及能不能被輸出output
LSTM有很多個(gè)版本,其中一個(gè)重要的版本是GRU(Gated Recurrent Unit),根據(jù)谷歌的測試表明,LSTM中最重要的是Forget gate,其次是Input gate,最次是Output gate。
介紹完LSTM的基本內(nèi)容 接下來實(shí)戰(zhàn)通過LSTM來預(yù)測股市收盤價(jià)格
先上結(jié)果?
1:隨著訓(xùn)練次數(shù)增加損失函數(shù)的圖像如下 可以看出基本符合肘部方法 但是局部會(huì)產(chǎn)生突變
?
?
?2:預(yù)測結(jié)果如下 紅色的是預(yù)測值 藍(lán)色的是真實(shí)值 可以看出除了某幾個(gè)極值點(diǎn)正確率較高
文章來源:http://www.zghlxwxcb.cn/news/detail-511500.html
?代碼如下文章來源地址http://www.zghlxwxcb.cn/news/detail-511500.html
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
def read_dataset(dataset_type):
assert dataset_type == "train" or dataset_type == "test"
df = pd.read_csv(stock_market_price_{}.csv'.format(dataset_type)) # 讀入股票數(shù)據(jù)
data = np.array(df['close']) # 獲取收盤價(jià)序列
data = data[::-1] # 反轉(zhuǎn),使數(shù)據(jù)按照日期先后順序排列
normalize_data = (data - np.mean(data)) / np.std(data) # 標(biāo)準(zhǔn)化
normalize_data = normalize_data[:, np.newaxis] # 增加維度
X, y = [], []
for i in range(len(normalize_data) - time_step):
_x = normalize_data[i:i + time_step]
_y = normalize_data[i + time_step]
X.append(_x.tolist())
y.append(_y.tolist())
# plt.figure()
# plt.plot(data)
# plt.show() # 以折線圖展示data
return X, y
# 實(shí)驗(yàn)參數(shù)設(shè)置
time_step = 7 # 用前七天的數(shù)據(jù)預(yù)測第八天
hidden_size = 4 # 隱藏層維度
lstm_layers = 1 # 網(wǎng)絡(luò)層數(shù)
batch_size = 64 # 每一批次訓(xùn)練多少個(gè)樣例
input_size = 1 # 輸入層維度
output_size = 1 # 輸出層維度
lr = 0.05 # 學(xué)習(xí)率
class myDataset(Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __getitem__(self, index):
return torch.Tensor(self.x[index]), torch.Tensor(self.y[index])
def __len__(self):
return len(self.x)
class LSTM(nn.Module):
def __init__(self, input_size, output_size, hidden_size, device):
super(LSTM, self).__init__()
self.input_size=input_size
self.output_size=output_size
self.hidden_size=hidden_size
self.device=device
def _one(a,b):
return nn.Parameter(torch.FloatTensor(a,b).to(self.device))
def _three():
return(_one(input_size,hidden_size),
_one(hidden_size,hidden_size),
nn.Parameter(torch.zeros(hidden_size).to(self.device)))
self.W_xi,self.W_hi,self.b_i=_three()
self.W_xf, self.W_hf, self.b_f = _three()
self.W_xo, self.W_ho, self.b_o = _three()
self.W_xc, self.W_hc, self.b_c = _three()
self.W_hq=_one(hidden_size,output_size)
self.b_q=nn.Parameter(torch.zeros(output_size).to(self.device))
self.params=[self.W_xi,self.W_hi,self.b_i,self.W_xf, self.W_hf, self.b_f, self.W_xo, self.W_ho, self.b_o,self.W_xc, self.W_hc, self.b_c,
self.W_hq,self.b_q]
for param in self.params:
if param.dim()==2:
nn.init.xavier_normal_(param)
def init_lstm_state(self, batch_size):
return (torch.zeros((batch_size, self.hidden_size), device=self.device),
torch.zeros((batch_size, self.hidden_size), device=self.device))
def forward(self, seq):
(H,C)=self.init_lstm_state(seq.shape[0])
for step in range(seq.shape[1]):
X=seq[:,step,:]
I=torch.sigmoid((X@self.W_xi)+(H@self.W_hi)+self.b_i)
F = torch.sigmoid((X @ self.W_xf) + (H @ self.W_hf) + self.b_f)
O = torch.sigmoid((X @ self.W_xo) + (H @ self.W_ho) + self.b_o)
C_tilda=torch.tanh(torch.matmul(X.float(),self.W_xc)+torch.matmul(H.float(),self.W_hc)+self.b_c)
C=F*C+I*C_tilda
H=O*torch.tanh(C)
Y=(H@self.W_hq)+self.b_q
return Y,(H,C)
X_train, y_train = read_dataset('train')
X_test, y_test = read_dataset('test')
train_dataset = myDataset(X_train, y_train)
test_dataset = myDataset(X_test, y_test)
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, 1)
# 設(shè)定訓(xùn)練輪數(shù)
num_epochs = 50
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
hist = np.zeros(num_epochs)
model = LSTM(input_size, output_size, hidden_size, device)
# 定義優(yōu)化器和損失函數(shù)
optimiser = torch.optim.Adam(model.parameters(), lr=lr) # 使用Adam優(yōu)化算法
loss_func = torch.nn.MSELoss(reduction='mean') # 使用均方差作為損失函數(shù)
for epoch in range(num_epochs):
epoch_loss = 0
for i, data in enumerate(train_loader):
X, y = data
pred_y, _ = model(X.to(device))
loss = loss_func(pred_y, y.to(device))
optimiser.zero_grad()
loss.backward()
optimiser.step()
epoch_loss += loss.item()
print("Epoch ", epoch, "MSE: ", epoch_loss)
hist[epoch] = epoch_loss
plt.plot(hist)
plt.show()
# 測試
model.eval()
result = []
for i, data in enumerate(test_loader):
X, y = data
pred_y, _ = model(X.to(device))
result.append(pred_y.item())
plt.plot(range(len(y_test)), y_test, label="true_y", color="blue")
plt.plot(range(len(result)), result, label="pred_y", color="red")
plt.legend(loc='best')
plt.show()
到了這里,關(guān)于LSTM神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)對股市收盤價(jià)格的預(yù)測實(shí)戰(zhàn)(python實(shí)現(xiàn) 附源碼 超詳細(xì))的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!