国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

opencv、dlib、paddlehub人臉檢測

這篇具有很好參考價值的文章主要介紹了opencv、dlib、paddlehub人臉檢測。希望對大家有所幫助。如果存在錯誤或未考慮完全的地方,請大家不吝賜教,您也可以點擊"舉報違法"按鈕提交疑問。

opencv、dlib、paddlehub檢測效果對比。dlib和paddlehub的效果相對好一點。

說明:本文只做人臉檢測不識別,找識別的不用看本文。

## 部署說明
# 1. 安裝python或conda
# 2. 安裝依賴,pip install -r requirements.txt
# 3. 192.168.1.41 修改為你部署機器的IP
# 4. python app_dlib.py啟動
# 5. 試驗,http://192.168.1.41:7049
# 6. 接口,http://192.168.1.41:7049/run/predict/
接口參數(shù),post請求,body傳1個包含base64圖片的JSON,替換圖片就行
{
    fn_index: 0, 
    data: [""], 
    session_hash: "s1oy98lial"
}

依賴(用1個就行)

dlib需要C++編譯器(gcc 或 vs)

gradio
opencv-python
dlib
paddlehub

opencv檢測

import gradio as gr
import cv2

# 加載人臉檢測器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye_tree_eyeglasses.xml')

# UGC: Define the inference fn() for your models
def model_inference(image):
    # 加載圖像
    # image = cv2.imread(image)
    # 將圖像轉換為灰度圖像
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 進行人臉檢測
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
    # 在圖像上標記人臉
    for (x, y, w, h) in faces:
        cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 3)
    # 顯示結果
    # cv2.imshow('Face Detection', image)
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()
    json_out = {"result": len(faces)}
    return image,json_out


def clear_all():
    return None, None, None

with gr.Blocks() as demo:
    gr.Markdown("人臉檢測")

    with gr.Column(scale=1, min_width=100):
        img_in = gr.Image(value="1.png",
                          label="Input")

        with gr.Row():
            btn1 = gr.Button("Clear")
            btn2 = gr.Button("Submit")
        img_out = gr.Image(label="Output").style(height=400)
        json_out = gr.JSON(label="jsonOutput")

    btn2.click(fn=model_inference, inputs=img_in, outputs=[img_out, json_out])
    btn1.click(fn=clear_all, inputs=None, outputs=[img_in, img_out, json_out])
    gr.Button.style(1)

demo.launch(server_name='192.168.1.41', share=True, server_port=7048)



opencv、dlib、paddlehub人臉檢測

?opencv、dlib、paddlehub人臉檢測

?

dlib檢測

import gradio as gr
import cv2
import dlib

detector = dlib.get_frontal_face_detector()
# predictor = dlib.shape_predictor(
#     "dlib_model/shape_predictor_68_face_landmarks.dat"
# )

# UGC: Define the inference fn() for your models
def model_inference(image):
    # 加載圖像
    # image = cv2.imread(image)
    # 將圖像轉換為灰度圖像
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 進行人臉檢測
    faces = detector(gray, 1)
    for face in faces:
        # 在圖片中標注人臉,并顯示
        left = face.left()
        top = face.top()
        right = face.right()
        bottom = face.bottom()
        cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)

        # shape = predictor(image, face)  # 尋找人臉的68個標定點
        # # 遍歷所有點,打印出其坐標,并圈出來
        # for pt in shape.parts():
        #     pt_pos = (pt.x, pt.y)
        #     cv2.circle(image, pt_pos, 1, (0, 255, 0), 2)
    json_out = {"result": len(faces)}
    return image,json_out


def clear_all():
    return None, None, None

with gr.Blocks() as demo:
    gr.Markdown("人臉檢測")

    with gr.Column(scale=1, min_width=100):
        img_in = gr.Image(value="1.png",
                          label="Input")

        with gr.Row():
            btn1 = gr.Button("Clear")
            btn2 = gr.Button("Submit")
        img_out = gr.Image(label="Output").style(height=400)
        json_out = gr.JSON(label="jsonOutput")

    btn2.click(fn=model_inference, inputs=img_in, outputs=[img_out, json_out])
    btn1.click(fn=clear_all, inputs=None, outputs=[img_in, img_out, json_out])
    gr.Button.style(1)

demo.launch(server_name='192.168.1.41', share=True, server_port=7049)



opencv、dlib、paddlehub人臉檢測

?PaddleHub檢測

import gradio as gr
import paddlehub as hub
import cv2

#直接調用PaddleHub中的人臉檢測
module = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")

def model_inference(image):
    # images(list[numpy.ndarray]): 圖片數(shù)據(jù),ndarray.shape為[H, W, C],BGR格式;
    # paths(list[str]): 圖片的路徑;
    # batch_size(int): batch的大?。?    # use_gpu(bool): 是否使用GPU;
    # visualization(bool): 是否將識別結果保存為圖片文件;
    # output_dir(str): 圖片的保存路徑,當為None時,默認設為face_detector_640_predict_output;
    # confs_threshold(float): 置信度的閾值。
    faces = module.face_detection([image], visualization=False)[0]["data"]
    for face in faces:
        # 在圖片中標注人臉,并顯示
        left = int(face["left"])
        top = int(face["top"])
        right = int(face["right"])
        bottom = int(face["bottom"])
        cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)

    json_out = {"result": len(faces)}
    return image,json_out


def clear_all():
    return None, None, None

with gr.Blocks() as demo:
    gr.Markdown("人臉檢測")

    with gr.Column(scale=1, min_width=100):
        img_in = gr.Image(value="1.png",
                          label="Input")

        with gr.Row():
            btn1 = gr.Button("Clear")
            btn2 = gr.Button("Submit")
        img_out = gr.Image(label="Output").style(height=400)
        json_out = gr.JSON(label="jsonOutput")

    btn2.click(fn=model_inference, inputs=img_in, outputs=[img_out, json_out])
    btn1.click(fn=clear_all, inputs=None, outputs=[img_in, img_out, json_out])
    gr.Button.style(1)

demo.launch(server_name='192.168.1.41', share=True, server_port=7050)



opencv、dlib、paddlehub人臉檢測

APIPOST調接口測試

?opencv、dlib、paddlehub人臉檢測

?

axios調用示例

var axios = require("axios").default;

var options = {
  method: 'POST',
  url: 'http://192.168.1.41:7050/run/predict/',
  headers: {'content-type': 'application/json'},
  data: '{\r\n    fn_index: 0, \r\n    data: [""], \r\n    session_hash: "s1oy98lial"\r\n}'
};

axios.request(options).then(function (response) {
  console.log(response.data);
}).catch(function (error) {
  console.error(error);
});

jquery調用示例文章來源地址http://www.zghlxwxcb.cn/news/detail-475913.html

const settings = {
  "async": true,
  "crossDomain": true,
  "url": "http://192.168.1.41:7050/run/predict/",
  "method": "POST",
  "headers": {
    "content-type": "application/json"
  },
  "data": "{\r\n    fn_index: 0, \r\n    data: [\"\"], \r\n    session_hash: \"s1oy98lial\"\r\n}"
};

$.ajax(settings).done(function (response) {
  console.log(response);
});

到了這里,關于opencv、dlib、paddlehub人臉檢測的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如若轉載,請注明出處: 如若內容造成侵權/違法違規(guī)/事實不符,請點擊違法舉報進行投訴反饋,一經查實,立即刪除!

領支付寶紅包贊助服務器費用

相關文章

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領取紅包,優(yōu)惠每天領

二維碼1

領取紅包

二維碼2

領紅包