一、安裝Visual Studio
OpenCV是一種開(kāi)源的計(jì)算機(jī)視覺(jué)開(kāi)發(fā)庫(kù)。既然是開(kāi)發(fā)庫(kù),那么必須依托某種語(yǔ)言程序來(lái)加載。以C++為例,在安裝OpenCV之前,必須安裝C++的程序開(kāi)發(fā)環(huán)境(IDE),在此我們選擇Visual Studio Community——VS社區(qū)版,這個(gè)版本是免費(fèi)的。
中文版下載安裝地址:
https://visualstudio.microsoft.com/zh-hans/downloads/
注意這是一個(gè)在線安裝的版本,請(qǐng)確保在安裝過(guò)程中網(wǎng)絡(luò)暢通。
二、創(chuàng)建C++程序
我們需要在VS中建立應(yīng)用程序。在此我們建立最簡(jiǎn)單的基于控制臺(tái)的應(yīng)用程序,項(xiàng)目名為face1。
三、下載OpenCV
所謂OpenCV的安裝,其實(shí)就是把OpenCV的庫(kù)路徑加入我們已有的項(xiàng)目路徑集合當(dāng)中?,F(xiàn)在有兩種方法,一種是自己下載OpencCV源碼,在源碼的基礎(chǔ)上編譯成庫(kù)(lib/dll)文件,一種是下載直接編譯好的庫(kù)文件, 我們選擇直接下載已經(jīng)編譯好的庫(kù)文件
最新版OpenCV Lib 下載鏈接
https://sourceforge.net/projects/opencvlibrary/files/latest/download
一共266MB,外網(wǎng)有的時(shí)候挺慢的。
四、安裝/配置OpenCV
下載后OpenCV后,運(yùn)行,解壓到一個(gè)固定目錄。比如我的:“D:\試驗(yàn)\軟件\opencv”——這個(gè)路徑稍后要作為庫(kù)和頭文件的路徑,加入以后C++程序項(xiàng)目中
在VS中,因?yàn)槊總€(gè)項(xiàng)目都是獨(dú)立編譯的,所以,每個(gè)項(xiàng)目具有自己的“規(guī)則包“。也就是說(shuō),對(duì)著項(xiàng)目名稱右鍵,選擇”屬性“,可以配置該項(xiàng)目的編譯規(guī)則。
現(xiàn)在我們?cè)趯傩源翱谥校渲肙penCV路徑,步驟如下
1、在屬性窗口中,我們選擇輸出目標(biāo)”配置”為“Debug“,”平臺(tái)“為”x64“。也就是編譯輸出在64位windows系統(tǒng)中運(yùn)行的調(diào)試版(debug)應(yīng)用程序
2、左邊選擇VC++目錄,右邊選中“包含目錄“項(xiàng)進(jìn)行編輯。把剛在OpenCV解壓目錄下的“include”目錄包含進(jìn)來(lái)。然后確定
3、重復(fù)上述步驟2。右邊選中“庫(kù)目錄“項(xiàng)進(jìn)行編輯。把剛在OpenCV解壓目錄下的“庫(kù)目錄”包含進(jìn)來(lái)。然后確定
4、在屬性窗口中,左邊選中“鏈接器->輸入“。右邊選中“附加依賴項(xiàng)”。把剛在OpenCV解壓后產(chǎn)生的靜態(tài)引用庫(kù)名字“opencv_world3416.lib”加進(jìn)來(lái)(注意名字后面的數(shù)字部分視各個(gè)版本不同而不同)。然后確定。
5、最后將OpenCV解壓目錄下的dll文件拷貝到程序運(yùn)行所在的目錄
五、運(yùn)行OpenCV程序
在已經(jīng)建立好的項(xiàng)目“face1”的源代碼中,加入opencv頭文件
接著,在程序中就可以使用openCV所提供的庫(kù)函數(shù)了。
比如在這個(gè)例子中:
我們讀取事先準(zhǔn)備好的一張圖片,并輸出它的尺寸:
運(yùn)行結(jié)果:
六、利用OpenCV程序進(jìn)行人臉檢測(cè)。
這個(gè)實(shí)例在opencv安裝目錄下的“samples/c++”目錄下。該目錄有大量實(shí)例,可以一一嘗試運(yùn)行。
在此我們選擇facedetect.cpp。復(fù)制相應(yīng)代碼運(yùn)行
注意頭文件需要做參照以下(而非例程中所示):
接著我們把這個(gè)項(xiàng)目所需要的數(shù)據(jù)文件移動(dòng)到該項(xiàng)目應(yīng)用程序所在目錄
整個(gè)實(shí)驗(yàn)程序源碼如下:
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
static void help(const char** argv)
{
cout << "\nThis program demonstrates the use of cv::CascadeClassifier class to detect objects (Face + eyes). You can use Haar or LBP features.\n"
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
"It's most known use is for faces.\n"
"Usage:\n"
<< argv[0]
<< " [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
" [--try-flip]\n"
" [filename|camera_index]\n\n"
"example:\n"
<< argv[0]
<< " --cascade=\"data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
"During execution:\n\tHit any key to quit.\n"
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip );
string cascadeName;
string nestedCascadeName;
int main( int argc, const char** argv )
{
VideoCapture capture;
Mat frame, image;
string inputName;
bool tryflip;
CascadeClassifier cascade, nestedCascade;
double scale;
cv::CommandLineParser parser(argc, argv,
"{help h"
"{cascade|data/haarcascades/haarcascade_frontalface_alt.xml|}"
"{nested-cascade|data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"
"{scale|1|}{try-flip||}{@filename||}"
);
if (parser.has("help"))
{
help(argv);
return 0;
}
cascadeName = parser.get<string>("cascade");
nestedCascadeName = parser.get<string>("nested-cascade");
scale = parser.get<double>("scale");
if (scale < 1)
scale = 1;
tryflip = parser.has("try-flip");
inputName = parser.get<string>("@filename");
if (!parser.check())
{
parser.printErrors();
return 0;
}
if (!nestedCascade.load(samples::findFileOrKeep(nestedCascadeName)))
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
if (!cascade.load(samples::findFile(cascadeName)))
{
cerr << "ERROR: Could not load classifier cascade" << endl;
help(argv);
return -1;
}
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
{
int camera = inputName.empty() ? 0 : inputName[0] - '0';
if(!capture.open(camera))
{
cout << "Capture from camera #" << camera << " didn't work" << endl;
return 1;
}
}
else if (!inputName.empty())
{
image = imread(samples::findFileOrKeep(inputName), IMREAD_COLOR);
if (image.empty())
{
if (!capture.open(samples::findFileOrKeep(inputName)))
{
cout << "Could not read " << inputName << endl;
return 1;
}
}
}
else
{
image = imread(samples::findFile("lena.jpg"), IMREAD_COLOR);
if (image.empty())
{
cout << "Couldn't read lena.jpg" << endl;
return 1;
}
}
if( capture.isOpened() )
{
cout << "Video capturing has been started ..." << endl;
for(;;)
{
capture >> frame;
if( frame.empty() )
break;
Mat frame1 = frame.clone();
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );
char c = (char)waitKey(10);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
}
else
{
cout << "Detecting face(s) in " << inputName << endl;
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
waitKey(0);
}
else if( !inputName.empty() )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( inputName.c_str(), "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf);
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
image = imread( buf, 1 );
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
char c = (char)waitKey(0);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
else
{
cerr << "Aw snap, couldn't read image " << buf << endl;
}
}
fclose(f);
}
}
}
return 0;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip )
{
double t = 0;
vector<Rect> faces, faces2;
const static Scalar colors[] =
{
Scalar(255,0,0),
Scalar(255,128,0),
Scalar(255,255,0),
Scalar(0,255,0),
Scalar(0,128,255),
Scalar(0,255,255),
Scalar(0,0,255),
Scalar(255,0,255)
};
Mat gray, smallImg;
cvtColor( img, gray, COLOR_BGR2GRAY );
double fx = 1 / scale;
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR_EXACT );
equalizeHist( smallImg, smallImg );
t = (double)getTickCount();
cascade.detectMultiScale( smallImg, faces,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
if( tryflip )
{
flip(smallImg, smallImg, 1);
cascade.detectMultiScale( smallImg, faces2,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); ++r )
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)getTickCount() - t;
printf( "detection time = %g ms\n", t*1000/getTickFrequency());
for ( size_t i = 0; i < faces.size(); i++ )
{
Rect r = faces[i];
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
double aspect_ratio = (double)r.width/r.height;
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
{
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
else
rectangle( img, Point(cvRound(r.x*scale), cvRound(r.y*scale)),
Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
color, 3, 8, 0);
if( nestedCascade.empty() )
continue;
smallImgROI = smallImg( r );
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for ( size_t j = 0; j < nestedObjects.size(); j++ )
{
Rect nr = nestedObjects[j];
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
radius = cvRound((nr.width + nr.height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
}
imshow( "result", img );
}
運(yùn)行程序。該程序會(huì)自動(dòng)打開(kāi)攝像頭,識(shí)別并定位攝像頭前的人臉以及眼睛部位。
輸入q或者Q,退出程序。文章來(lái)源:http://www.zghlxwxcb.cn/news/detail-474894.html
下一篇------參數(shù)解析文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-474894.html
到了這里,關(guān)于OpenCV下載、安裝以及使用的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!