如何利用卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征
。
卷積神經(jīng)網(wǎng)絡(luò)有以下幾種應(yīng)用可供研究:1、基于卷積網(wǎng)絡(luò)的形狀識(shí)別物體的形狀是人的視覺系統(tǒng)分析和識(shí)別物體的基礎(chǔ),幾何形狀是物體的本質(zhì)特征的表現(xiàn),并具有平移、縮放和旋轉(zhuǎn)不變等特點(diǎn),所以在模式識(shí)別領(lǐng)域,對(duì)于形狀的分析和識(shí)別具有十分重要的意義,而二維圖像作為三維圖像的特例以及組成部分,因此二維圖像的識(shí)別是三維圖像識(shí)別的基礎(chǔ)。
2、基于卷積網(wǎng)絡(luò)的人臉檢測(cè)卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)的人臉檢測(cè)方法不同,它是通過直接作用于輸入樣本,用樣本來訓(xùn)練網(wǎng)絡(luò)并最終實(shí)現(xiàn)檢測(cè)任務(wù)的。
它是非參數(shù)型的人臉檢測(cè)方法,可以省去傳統(tǒng)方法中建模、參數(shù)估計(jì)以及參數(shù)檢驗(yàn)、重建模型等的一系列復(fù)雜過程。本文針對(duì)圖像中任意大小、位置、姿勢(shì)、方向、膚色、面部表情和光照條件的人臉。
3、文字識(shí)別系統(tǒng)在經(jīng)典的模式識(shí)別中,一般是事先提取特征。提取諸多特征后,要對(duì)這些特征進(jìn)行相關(guān)性分析,找到最能代表字符的特征,去掉對(duì)分類無關(guān)和自相關(guān)的特征。
然而,這些特征的提取太過依賴人的經(jīng)驗(yàn)和主觀意識(shí),提取到的特征的不同對(duì)分類性能影響很大,甚至提取的特征的順序也會(huì)影響最后的分類性能。同時(shí),圖像預(yù)處理的好壞也會(huì)影響到提取的特征。
谷歌人工智能寫作項(xiàng)目:神經(jīng)網(wǎng)絡(luò)偽原創(chuàng)
卷積神經(jīng)網(wǎng)絡(luò)每層提取的特征是什么樣的
卷積神經(jīng)網(wǎng)絡(luò)是一個(gè)多層的神經(jīng)網(wǎng)絡(luò),每層由多個(gè)二維平面組成,而每個(gè)平面由多個(gè)獨(dú)立神經(jīng)元組成好文案。
圖:卷積神經(jīng)網(wǎng)絡(luò)的概念示范:輸入圖像通過和三個(gè)可訓(xùn)練的濾波器和可加偏置進(jìn)行卷積,濾波過程如圖一,卷積后在C1層產(chǎn)生三個(gè)特征映射圖,然后特征映射圖中每組的四個(gè)像素再進(jìn)行求和,加權(quán)值,加偏置,通過一個(gè)Sigmoid函數(shù)得到三個(gè)S2層的特征映射圖。
這些映射圖再進(jìn)過濾波得到C3層。這個(gè)層級(jí)結(jié)構(gòu)再和S2一樣產(chǎn)生S4。最終,這些像素值被光柵化,并連接成一個(gè)向量輸入到傳統(tǒng)的神經(jīng)網(wǎng)絡(luò),得到輸出。
一般地,C層為特征提取層,每個(gè)神經(jīng)元的輸入與前一層的局部感受野相連,并提取該局部的特征,一旦該局部特征被提取后,它與其他特征間的位置關(guān)系也隨之確定下來;S層是特征映射層,網(wǎng)絡(luò)的每個(gè)計(jì)算層由多個(gè)特征映射組成,每個(gè)特征映射為一個(gè)平面,平面上所有神經(jīng)元的權(quán)值相等。文章來源:http://www.zghlxwxcb.cn/news/detail-468616.html
特征映射結(jié)構(gòu)采用影響函數(shù)核小的sigmoid函數(shù)作為卷積網(wǎng)絡(luò)的激活函數(shù),使得特征映射具有位移不變性。此外,由于一個(gè)映射面上的神經(jīng)元共享權(quán)值,因而減少了網(wǎng)絡(luò)自由參文章來源地址http://www.zghlxwxcb.cn/news/detail-468616.html
到了這里,關(guān)于卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征的操作是怎樣完成的的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!