国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

這篇具有很好參考價值的文章主要介紹了2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案。希望對大家有所幫助。如果存在錯誤或未考慮完全的地方,請大家不吝賜教,您也可以點擊"舉報違法"按鈕提交疑問。

四月維夏,六月徂暑。
勤將勵勉,勿望再晨。

——贈nmy

一 聲明

南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
答案更新時間:2023.04.28,修改了4.2的存疑部分。已更新完成,如無錯誤不在更新

為了方便核算,我在代碼中單獨將m定義為自變量運算或者直接以m=117代入,作業(yè)中可以直接代入,即代碼中不出現(xiàn)m。本機版本為 MATLAB R2020b2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案


由于作者解答能力有限,難免有瑕疵錯誤之處,還請多多海涵!本答案僅供學習參考之用,請勿直接抄襲。有錯漏之處,煩請指正。聯(lián)系QQ:1415520898,如有問題可通過qq或者評論區(qū)留言方式交流。

二 MATLAB下載

這里引用@dew_142857博主的相關文章最新MATLAB R2020b超詳細安裝教程(附完整安裝文件)實測有效,按照步驟一步步來即可,為方便同學下載,這里將文中所提向公眾號索要的百度網(wǎng)盤鏈接放在下方
另外安裝好的MATLAB約為96.6 GB ,請?zhí)崆耙?guī)劃好磁盤空間。

鏈接:https://pan.baidu.com/s/1NExZ_v-QN4Xbu4Jk1C0dEA
提取碼:7won

也可以在https://matlab.mathworks.com/注冊一個賬戶,直接在線使用
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

《數(shù)學實驗》練習一

1.1

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

log(x)——>lnx;inf——>無窮

1.2

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

exp(x)——>e?;diff(y,x,n)——>y對x的n階導函數(shù)

1.3

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

第一小問答案不要忘記+C;int——>處理定積分、不定積分

1.4

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2020版本
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

寫全應該是taylor((117/200+sin(x))*cos(x),x,‘Order’,5,‘ExpansionPoint’,0),在x=0處可省略。

2010版
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

1.5

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

本次隨機的中間數(shù)據(jù)為:

[8226958330713791/9007199254740992, (2^(1/2)*469134536469018791^(1/2))/671088640, ((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2), (((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2) + 117/100)^(1/2), ((((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2), (((((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2), ((((((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2), (((((((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2), ((((((((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2), (((((((((2^(1/2)*469134536469018791^(1/2))/671088640 + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2) + 117/100)^(1/2)]

1.6

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

本題用到的符號較多,進行下一題時使用clear清除變量

1.7

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
1.7.1
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
1.7.2
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

1.8

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

1.8.2
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
也可以使用下方代碼,效果一樣
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

1.9

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

1.10

plot是繪制二維圖形,并且是x,y的表達式是已知的或者是形如y=f(x)這樣確切的表達式plot函數(shù)的基本調(diào)用格式為:plot(x,y) 其中x和y為長度相同的向量,分別用于存儲x坐標和y坐標數(shù)據(jù)。
ezplot是畫出隱函數(shù)圖形,是形如f(x,y)=0這種不能寫出像y=f(x)這種函數(shù)的圖形ezplot一元函數(shù)繪圖函數(shù)ezplot(fun) ezplot(fun,[min,max])
fplot(y,[a,b])精確繪圖

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

1.11

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
[X,Y] = meshgrid(-5:0.1:5);可以換成書上形式:
x=-5:0.1:5;y=x;
[X Y]=meshgrid(x,y);
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

《數(shù)學實驗》練習二

2.1

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

第一個不動點為-0.0084
第二個不動點為119.0084

(2)先定義一個普世性的迭代方法,用M文件保存
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
函數(shù)收斂,只要初值不取14165^(1/2)/2+119/2 即第二個不動點,收斂值與初值的選取關系不大,總是收斂于-0.0084, 只有初值取 14165 ^(1/2)/2+119/2,迭代函數(shù)才以它為極限;
收斂值一定是不動點其一;

2.2

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

m=117;
syms x;
f=inline('1-2*abs(x-1/2)');%設定函數(shù)
x0=1/4;%設定初值
for i=1:1:10
plot(i,f(x0),'*');%用*作圖,可以在括號內(nèi)添加'MarkerSize',20放大點
x0=f(x0); %更新x0的值,x0類似于C語言的static類型變量
hold on %將各個點劃在一張圖上
end
hold off

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

幾個圖像最后都是趨于0,如果沒有的話要將i的終值調(diào)大,我的后三個圖的i=1:1:100;

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

2.3

該題是P76頁例二
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

%MARTIN函數(shù)代碼
function Martin(a,b,c,N) %N為迭代次數(shù)
f=@(x,y)(y-sign(x)*sqrt(abs(b*x-c)));
g=@(x)(a-x);
m=[0;0];
for n=1:N
    m(:,n+1)=[f(m(1,n),m(2,n)),g(m(1,n))];%表示矩陣m的第n+1列。冒號表示選擇所有行
end
plot(m(1,:),m(2,:),'kx');
axis equal %橫縱坐標采用相等單位長度
%循環(huán)迭代N次,N是預定義的數(shù)字。在循環(huán)內(nèi)部,代碼更新矩陣m中的值。 具體來說,該代碼通過將其第一個元素設置為f(m(1,n),m(2,n)),將其第二個元素設置為g(m(1,n))來更新m的第n列。 第一行0后面的分號表示矩陣m初始化為兩行N列的列向量。

m=117;
Martin(m,m,m,5000)
Martin(-m,-m,m,10000)
Martin(-m,m/1000,-m,15000)
Martin(m/1000,m/1000,0.5,20000)

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

2.4

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
(1)

%此小問無需在卷面作答,且每人選的數(shù)不一樣,仔細看題目?。?!
m=117;
syms x;
diff(subs((100*x+117)/(x^2+100),x,117^(1/3))) %對默認的變量進行一次的求導
%我取的是a=100,c=1;最后結果的絕對值應小于1才可以,否則另取
ans =
 
0

(2)

syms x;
m=117;
f=inline('(100*x+117)/(x^2+100)');
x0=10;% 任取一個初值
for i=1:20;
x0=f(x0);
fprintf('%g,%g\n',i,x0);
end

%我的運行結果
1,5.585
2,5.14893
3,4.99475
4,4.93387
5,4.90889
6,4.89849
7,4.89413
8,4.8923
9,4.89153
10,4.89121
11,4.89107
12,4.89101
13,4.89099
14,4.89098
15,4.89098
16,4.89097
17,4.89097
18,4.89097
19,4.89097
20,4.89097

(3)
根據(jù)個人體會回答

函數(shù)迭代的收斂速度與初值的選取關系不大;
迭代初值對迭代的收斂性存在影響,但是這種影響存在不確定性,沒有發(fā)現(xiàn)可循的規(guī)律;

用自己的話改一下即可

2.5

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

syms x;
y=sin(x);
y1=taylor(sin(x),x,'Order',2);
y2=taylor(sin(x),x,'Order',4);
y3=taylor(sin(x),x,'Order',6);
fplot([y y1 y2 y3])
xlim([-3/2*pi 3/2*pi])
grid on
legend('sin(x)','approximation of sin(x) up to O(x^1)','approximation of sin(x) up to O(x^3)','approximation of sin(x) up to O(x^5)')

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

(2)

syms x;
y=sin(x);
y1=taylor(sin(x),x,'Order',8);
y2=taylor(sin(x),x,'Order',10);
y3=taylor(sin(x),x,'Order',12);
fplot([y y1 y2 y3])
xlim([-3/2*pi 3/2*pi])
grid on
legend('sin(x)','approximation of sin(x) up to O(x^7)','approximation of sin(x) up to O(x^9)','approximation of sin(x) up to O(x^(11))')

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

(3)

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

《數(shù)學實驗》練習三

3.1

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

A=str2sym('[117,117-4;6-117,10-117]');%表示符號表達式
[P,D]=eig(A);
Q=inv(P);
syms n;
x=[1;2];
xn=P*(D.^n)*Q*x 


xn =
 
(339*6^n)/2 - (337*4^n)/2 - (559*0^n)/111
        2*0^n + (337*4^n)/2 - (333*6^n)/2

3.2

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

A=str2sym('[117,117-4;6-117,10-117]');
B=1/10.*A;
[P,D]=eig(B);
Q=inv(P);
syms n;
x=[1;2];
xn=P*(D.^n)*Q*x



xn =
 
(339*(3/5)^n)/2 - (337*(2/5)^n)/2 - (559*0^n)/111
        2*0^n + (337*(2/5)^n)/2 - (333*(3/5)^n)/2

3.3

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

%教材P136頁原題
A=[9,5;2,6];
t=[];
for i=1:20
    x=2*rand(2,1)-1;
    t(length(t)+1,1:2)=x;
    for j=1:40
        x=A*x;
        t(length(t)+1,1:2)=x;
    end
end
plot(t(:,1),t(:,2),'*')
grid('on') 

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

(2)可以看到,迭代陣列似乎在一條通過原點的直線上。
(3)

A=[9,5;2,6]; a=[];
x=2*rand(2,1)-1; 
for i=1:20
a(i,1:2)=x;
x=A*x;
end
for i=1:20
if a(i,1)==0
else t=a(i,2)/a(i,1);
fprintf('%g,%g\n',i,t);
end
end
%結果
1,0.911983
2,0.551028
3,0.451391
4,0.418261
5,0.406586
6,0.402388
7,0.400867
8,0.400315
9,0.400115
10,0.400042
11,0.400015
12,0.400006
13,0.400002
14,0.400001
15,0.4
16,0.4
17,0.4
18,0.4
19,0.4
20,0.4

(4)
極限值是圖像直線的斜率

按照自己語言組織下面任意一條

  1. 最終穩(wěn)定值為迭代矩陣的特征值之一。
  2. 如果迭代矩陣有多個線性無關的特征向量對應于同一個特征值,那么最終穩(wěn)定值將是這些特征向量線性組合的結果。
  3. 穩(wěn)定值是迭代矩陣的特征向量,對應的特征值為1。而迭代矩陣的特征值和特征向量則可以通過特征方程來求得。

3.4

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
書P141相似題

m=117;
A=[m-1,m;1-m,-m];
p=[0.4;0.6];%選擇合適初始向量,要求和為1
[P,D]=eig(A)%P每列是特征向量,D主對角線元素是特征值
for i=1:20
    p(:,i+1)=A*p(:,i);
end
fprintf('%2f,%2f\n',p)

還可以使用下面的方法求穩(wěn)定值

m=117;
A=[m,1/4-m;m-3/4,1-m];
x0=[0.4;0.6];
n=10000;
y = A^n * x0

結果

%A=[m,6-m;m-2,8-m]
%A=[m,1/4-m;m-3/4,1-m]
%A=[m-1,m;1-m,-m]

(4)ps:本題較難,可適當放棄

在線性映射迭代中,迭代矩陣的穩(wěn)定性取決于其特征值的大小和分布。特征值是矩陣的一個重要性質(zhì),它描述了矩陣在線性變換下的變化情況。

如果迭代矩陣的所有特征值的絕對值都小于1,那么迭代矩陣就是穩(wěn)定的,每次迭代后矩陣的元素值都會趨近于一個穩(wěn)定值。

但是,如果迭代矩陣存在特征值的絕對值大于等于1,那么迭代矩陣就是不穩(wěn)定的。這種情況下,每次迭代后矩陣的元素值都會趨近于無窮大或無窮小,從而導致迭代結果失效。

另外,如果迭代矩陣存在多個特征值相同的情況,那么迭代矩陣也可能不穩(wěn)定。這種情況下,迭代矩陣的特征向量可能會出現(xiàn)非常大的幅度波動,從而導致迭代結果不可靠。

因此,對于二維矩陣的線性映射迭代,需要對迭代矩陣的特征值進行分析,以確定其穩(wěn)定性。如果迭代矩陣不穩(wěn)定,需要采取一些措施,如調(diào)整迭代步長或使用更穩(wěn)定的迭代算法,以確保迭代結果的可靠性。

3.5

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

%如果默認b>a
>> I=0;
>> m=[];
>> n=1000;
>> for a=1:n
for c=a+1:n
b=sqrt(c^2-a^2);
if(b==floor(b))&(b>a)&(c==b+2)
I=I+1;m(:,I)=[a,b,c];
end
end
end
>> m

m =

  1176     8    10    12    14    16    18    20    22    24    26    28    30    32    34    36    38
     8    15    24    35    48    63    80    99   120   143   168   195   224   255   288   323   360
    10    17    26    37    50    65    82   101   122   145   170   197   226   257   290   325   362

  182940    42    44    46    48    50    52    54    56    58    60    62
   399   440   483   528   575   624   675   728   783   840   899   960
   401   442   485   530   577   626   677   730   785   842   901   962

>>

公式:a=2m b=m^2-1 c=m^2+1(m>2,m為整數(shù));
即:
{a,b,c}={(2u)^2,(u^2-1)^2,(u^2+1)^2}

上課時默認b>a,下面給出a、b關系不確定是時的代碼,無需寫在試卷上

abc0=zeros(1000,3);
k=0;
for c=3:1000
b=c-2;
a=sqrt(c^2-b^2);
if(mod(a,1)==0)
k=k+1;
abc0(k,:)=[a b c];
end
end
abc=abc0(1:k,:);
fprintf('所有勾股數(shù) a b c=\n')
disp(abc)

3.6

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

for k=1:200 
	for b=1:999
		a=sqrt((b+k)^2-b^2);
		if((a==floor(a))&gcd(gcd(a,b),(b+k))==1)fprintf('%i,',k);
			break;
		end
	end
end

1,2,8,9,18,25,32,49,50,72,81,98,121,128,162,169,200

k為完全平方數(shù)或者完全平方數(shù)的二倍
預測k在[200,300]之間有200,225,242,288,289

《數(shù)學實驗》練習四

4.1

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

% 方法一:通過法方程組求解
d0=9;
x=[1.5,1.8,2.4,2.8,3.4,3.7,4.2,4.7,5.3];
y=[8.9,10.1,12.4,14.3,16.2,17.8,19.6,22.0,24.1];
d1=sum(x);d2=sum(x.^2);b1=sum(y);b2=sum(y.*x);
A=[d0,d1;d1,d2];B=[b1;b2];
u=A\B;
a0=u(1)
a1=u(2)
error=sum((y-(a0+a1.*x)).^2)

a0 =

    2.8304


a1 =

    4.0244


error =

    0.2409
%方法二:直接求解
x=[1.5,1.8,2.4,2.8,3.4,3.7,4.2,4.7,5.3];
y=[8.9,10.1,12.4,14.3,16.2,17.8,19.6,22.0,24.1];
P=polyfit(x,y,1)


P =

    4.0244    2.8304


error=sum((y-(2.8304+4.0244.*x)).^2)%誤差


error =

    0.2409

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

4.2

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案
(1)

%我的學號尾數(shù)是7;故數(shù)據(jù)是到1920年,對應人口是106.5,第14,
%則t2=t(14),x2=x(14)
%這段代碼是用來進行數(shù)據(jù)擬合的,其中變量t和x分別代表時間和數(shù)據(jù)點。代碼用log函數(shù)將數(shù)據(jù)點轉換成線性形式,然后使用線性回歸來擬合兩個數(shù)據(jù)點的斜率和截距,最后用指數(shù)函數(shù)求出x0和k,從而得到新的函數(shù)曲線。代碼中的error表示新的函數(shù)曲線與原數(shù)據(jù)點的誤差平方和
t=1790:10:1980;
x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76,92,106.5,123.2,131.7,150.7,179.3,204.0,226.5];
t1=t(1);x1=x(1);
t2=t(14);x2=x(14); %此步根據(jù)學號不同而不同
A=[1,t1;1,t2];
b=[log(x1);log(x2)];
u=A\b;
x0=exp(u(1))
k=u(2)
error=sum((x0*exp(k*t)-x).^2)


x0 =

   6.5242e-20


k =

    0.0254


error =

   1.2278e+05

(2)

t=1790:10:1920;
x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76,92,106.5];
%我的數(shù)據(jù)是到1920,所以上面的數(shù)據(jù)是截到1920年對應的106.5
y=log(x); 
m=length(t);
A=[m,sum(t);sum(t),sum(t.^2)]; 
b=[sum(y);y*t'];
u=A\b;
x0=exp(u(1))
k=u(2)
error=sum((x0*exp(k*t)-x).^2)


x0 =

   2.7207e-20


k =

    0.0260


error =

  681.9588

4.3

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

x=1:26;
y=[1807,2001,2158,2305,2422,2601,2753,2914,3106,3303,3460,3638,3799,3971,4125,4280,4409,4560,4698,4805,4884,4948,5013,5086,5124,5163];
 a=[6000,2,0.01];
f=@(a,x)a(1)./(1+a(2)*exp(-a(3)*x));
[A,resnorm]=lsqcurvefit(f,a,x,y)
f(A,20)



A =

   1.0e+03 *

    5.7882    0.0025    0.0001


resnorm =

   3.3995e+04


ans =

   4.7438e+03

4.4

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案

x=1:26;
y=[1807,2001,2158,2305,2422,2601,2753,2914,3106,3303,3460,3638,3799,3971,4125,4280,4409,4560,4698,4805,4884,4948,5013,5086,5124,5163];
a=[6000,2,0.1,0.1];
f=@(a,x)a(1)./(1+a(2)*exp(-a(3)*x-a(4)*x.^2));
[A,resnorm]=lsqcurvefit(f,a,x,y)
 t=27;
while    f(A,t+1)-f(A,t)>=10
 t=t+1;
end
f(A,t)




A =

   1.0e+03 *

    5.3860    0.0021    0.0001    0.0000


resnorm =

   9.1025e+03


ans =

   5.3409e+03

4.5

2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案文章來源地址http://www.zghlxwxcb.cn/news/detail-419725.html

x=1:26;
y=[1807,2001,2158,2305,2422,2601,2753,2914,3106,3303,3460,3638,3799,3971,4125,4280,4409,4560,4698,4805,4884,4948,5013,5086,5124,5163];
a=[2,0.1,0.1];%r、k、a
f=@(a,x)a(1)*exp(a(2)*x+a(3));
[A,resnorm]=lsqcurvefit(f,a,x,y)
 t=27;
while    f(A,t+1)-f(A,t)>=10
 t=t+1;
end
f(A,t)

A =

    2.4511    0.3152   -0.0841


resnorm =

   2.3628e+08


ans =

   Inf

到了這里,關于2023南京郵電大學通達學院《數(shù)學實驗》MATLAB實驗答案的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如若轉載,請注明出處: 如若內(nèi)容造成侵權/違法違規(guī)/事實不符,請點擊違法舉報進行投訴反饋,一經(jīng)查實,立即刪除!

領支付寶紅包贊助服務器費用

相關文章

  • 南京郵電大學算法與設計實驗四:回溯法(最全最新,與題目要求一致)

    南京郵電大學算法與設計實驗四:回溯法(最全最新,與題目要求一致)

    要求用回溯法求解8-皇后問題,使放置在8*8棋盤上的8個皇后彼此不受攻擊,即:任何兩個皇后都不在同一行、同一列或同一斜線上。請輸出8皇后問題的所有可行解。 用回溯法編寫一個遞歸程序解決如下裝載問題:有n個集裝箱要裝上2艘載重分別為c1和c2的輪船,其中集裝箱i的

    2024年02月05日
    瀏覽(125)
  • 南京郵電大學Web技術雙語實驗一(客戶端HTML腳本編寫)

    實驗目的: (1) 通過上機實踐,熟悉 HTML 和 JavaScript 腳本實現(xiàn)技術。 (2) 加深對 Web 編程的認識 實驗要求: 1 編寫個人主頁,要求包含如下信息。 (1) 標題“歡迎訪問×××的主頁” (2) 個人簡介,包含照片。 (3) 個人經(jīng)歷簡介,以有序列表形式顯示。 (4) 個人最

    2024年02月05日
    瀏覽(21)
  • 南京郵電大學算法與設計實驗二:貪心算法(最全最新,與題目要求一致)

    南京郵電大學算法與設計實驗二:貪心算法(最全最新,與題目要求一致)

    三、實驗原理及內(nèi)容 實驗原理: 1 、用貪心法實現(xiàn)求兩序列的一般背包問題。要求掌握貪心法思想在實際中的應用,分析一般背包的問題特征,選擇算法策略并設計具體算法,編程實現(xiàn)貪心選擇策略的比較,并輸出最優(yōu)解和最優(yōu)解值。 2 、用貪心法求解帶時限的 ( 單位時間

    2024年02月05日
    瀏覽(45)
  • 南京郵電大學算法與設計實驗一:分治策略(最全最新,與題目要求一致)

    南京郵電大學算法與設計實驗一:分治策略(最全最新,與題目要求一致)

    實驗原理: 1、用分治法實現(xiàn)一組無序序列的兩路合并排序和快速排序。要求清楚合并排序及快速排序的基本原理,編程實現(xiàn)分別用這兩種方法將輸入的一組無序序列排序為有序序列后輸出。 2、采用基于“五元中值組取中值分割法”(median-of-median-of-five partitioning)的線性時

    2024年04月17日
    瀏覽(196)
  • 南京郵電大學電工電子(數(shù)電)實驗報告——計數(shù)器 & 移位寄存器

    南京郵電大學電工電子(數(shù)電)實驗報告——計數(shù)器 & 移位寄存器

    1、掌握計數(shù)器的邏輯功能及應用方法 2、掌握任意進制計數(shù)器的設計方法 3、掌握數(shù)字電路多個輸出波形相位關系的正確測試方法 4、了解非均勻周期信號波形的測試方法 設計一個分頻比N=5的整數(shù)分頻電路,觀察并記錄時鐘脈沖和輸出波形。 選用cb4cle二進制計數(shù)器模塊,采用

    2024年02月03日
    瀏覽(29)
  • 南京郵電大學電工電子基礎B實驗四(戴維南與諾頓定理)

    南京郵電大學電工電子基礎B實驗四(戴維南與諾頓定理)

    一、 實驗目的 1、學習幾種常用的等效電源的測量方法 2、比較幾種測量方法所適用的情況 3、分析各種方法的誤差大小及其產(chǎn)生的原因 二、 主要儀器設備及軟件 硬件:交流電源、電容、電感、電阻、波特圖儀。 軟件:Multisim14.0 三、 75頁實驗表格 四、 仿真電路 五、 測量方

    2023年04月15日
    瀏覽(25)
  • 南京郵電大學電工電子(數(shù)電)實驗報告——數(shù)字電路與模擬電路的綜合應用

    南京郵電大學電工電子(數(shù)電)實驗報告——數(shù)字電路與模擬電路的綜合應用

    1、了解D/A轉換器的基本工作原理和基本結構 2、了解大規(guī)模集成D/A轉換器的功能及其典型應用方法 3、掌握綜合性電路的調(diào)測方法 實驗內(nèi)容∶設計一個可編程波形發(fā)生器技術指標∶ ① 輸出信號波形受K2和K1控制 開關K2K1=01時,輸出信號波形為正斜率鋸齒波。開關K2K1=10時,輸出

    2024年02月06日
    瀏覽(32)
  • 南京郵電大學匯編語言程序設計實驗二(用戶登錄驗證程序的設計)

    1.掌握循環(huán)程序的編寫以及結束循環(huán)的方法。 2.掌握DOS、BIOS功能調(diào)用的使用方法。 用戶登錄驗證程序的實現(xiàn) 程序執(zhí)行后,給出提示操作,請用戶鍵入用戶名和密碼;用戶在鍵入密碼時,程序不回顯鍵入字符;只有當用戶鍵入的用戶名,密碼字符串和程序內(nèi)定的字符串相同時

    2023年04月18日
    瀏覽(24)
  • 南京郵電大學匯編語言程序設計實驗一(匯編語言語法練習與代碼轉換)

    南京郵電大學匯編語言程序設計實驗一(匯編語言語法練習與代碼轉換)

    排除語法錯誤:給出的是一個通過比較法完成8位二進制數(shù)轉換成十進制數(shù)送屏幕顯示功能的匯編語言源程序,但有很多語法錯誤。要求實驗者按照原樣對源程序進行編輯,匯編后,根據(jù)TASM給出的信息對源程序進行修改,知道沒有語法錯誤為止。然后進行鏈接,并執(zhí)行相應可

    2024年02月08日
    瀏覽(30)
  • 南京郵電大學數(shù)據(jù)結構實驗一(線性表的基本運算及多項式的算術運算)(代碼篇)

    小伙伴們要多多體會,不要全部借鑒哦!

    2024年02月08日
    瀏覽(29)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領取紅包,優(yōu)惠每天領

二維碼1

領取紅包

二維碼2

領紅包