国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

基于GAN的圖像生成模型

這篇具有很好參考價值的文章主要介紹了基于GAN的圖像生成模型。希望對大家有所幫助。如果存在錯誤或未考慮完全的地方,請大家不吝賜教,您也可以點擊"舉報違法"按鈕提交疑問。

這是pytorch官網的示例,記錄訓練GAN生成牙刷的過程,最終生成器生成牙刷的圖像已經可以比較好了。
基于GAN的圖像生成模型

from __future__ import print_function
#%matplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

# Set random seed for reproducibility
manualSeed = 999
#manualSeed = random.randint(1, 10000) # use if you want new results
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)

定義一些參數

# Root directory for dataset
dataroot = "data/celeba"

# Number of workers for dataloader
workers = 2

# Batch size during training
batch_size = 8

# Spatial size of training images. All images will be resized to this
#   size using a transformer.
image_size = 64

# Number of channels in the training images. For color images this is 3
nc = 3

# Size of z latent vector (i.e. size of generator input)
nz = 100

# Size of feature maps in generator
ngf = 64

# Size of feature maps in discriminator
ndf = 64

# Number of training epochs
num_epochs = 30

# Learning rate for optimizers
lr = 0.005

# Beta1 hyperparam for Adam optimizers
beta1 = 0.5

# Number of GPUs available. Use 0 for CPU mode.
ngpu = 1

數據加載類

class ChipDatasets(Dataset):
    def __init__(self, root,image_transforms=None,size=(128,128)):
        """__init__ _summary_

        Args:
            root (str): 數據路徑
            transforms (_type_, optional): _description_. Defaults to None.
            size (tuple, optional): size=(width,height). Defaults to (256,128).
        """
        #初始化
        self.root = root # root下面就是圖片
        self.image_paths = self.get_all_images(root)

        self.image_transforms = image_transforms
        self.label_transforms = transforms.Compose([transforms.ToPILImage(),transforms.ToTensor()])
        self.h = size[1] # size=(width,height)
        self.w = size[0] # size=(width,height)

    def get_all_images(self,root):
        image_externs = ["bmp","png","jpg","jpeg"]
        image_paths = []
        for item in os.listdir(root):
            item_extern = item.rsplit(".",1)[-1]
            if str(item_extern).lower() in image_externs:
                image_paths.append(os.path.join(root,item))
        return image_paths

   
    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        
        image = cv.imread(self.image_paths[idx])
        image = cv.cvtColor(image,cv.COLOR_BGR2RGB) # 為了tensorboard顯示的時候正常所以采用RGB格式
        #這里需要resize,因為用Dataloader加載的同一個batch里面的圖片大小需要一樣
        h,w = image.shape[:2]
        if h!= self.h or w!= self.w:
            image = cv.resize(image,(self.w, self.h))

        # prepare the input 
        # defect_image = self.create_defect_image(image) # 對輸入數據加破損
        defect_image = image # 
        defect_image = torch.tensor(defect_image) 
        defect_image_chw = defect_image.permute(2,0,1) # 從HWC轉為CHW
        if self.image_transforms is None:
            input = self.label_transforms(defect_image_chw)     
        else:
            input = self.image_transforms(defect_image_chw)   

        # prepare the label
        label_tensor = torch.tensor(image)
        label_tensor = label_tensor.permute(2,0,1)
        label = self.label_transforms(label_tensor)
        return input,label

創(chuàng)建dataset和dataloader

import importlib
import my_encoder
importlib.reload(my_encoder)
from my_encoder import AutoEncoder, DecoderStraight,Encoder,ChipDatasets,SSIM

# We can use an image folder dataset the way we have it setup.
# Create the dataset
# dataset = dset.ImageFolder(root=dataroot,
#                            transform=transforms.Compose([
#                                transforms.Resize(image_size),
#                                transforms.CenterCrop(image_size),
#                                transforms.ToTensor(),
#                                transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
#                            ]))

dataset = ChipDatasets(r"H:\imageData\MVTec\hazelnut\good",None,size=(64,64))
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                                         shuffle=True, num_workers=workers)

# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")

# Plot some training images
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))

基于GAN的圖像生成模型

模型權重的初始化函數

# custom weights initialization called on netG and netD
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

定義生成器

# Generator Code

class Generator(nn.Module):
    def __init__(self, ngpu):
        super(Generator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
            nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)

驗證生成器是否正確

# Create the generator
netG = Generator(ngpu).to(device)

# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netG = nn.DataParallel(netG, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.02.
netG.apply(weights_init)

# Print the model
print(netG)
Generator(
  (main): Sequential(
    (0): ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)
    (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
    (3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (8): ReLU(inplace=True)
    (9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (11): ReLU(inplace=True)
    (12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (13): Tanh()
  )
)

定義判別器

class Discriminator(nn.Module):
    def __init__(self, ngpu):
        super(Discriminator, self).__init__()
        self.ngpu = ngpu
        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

驗證判別器是否正確

# Create the Discriminator
netD = Discriminator(ngpu).to(device)

# Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
    netD = nn.DataParallel(netD, list(range(ngpu)))

# Apply the weights_init function to randomly initialize all weights
#  to mean=0, stdev=0.2.
netD.apply(weights_init)

# Print the model
print(netD)
Discriminator(
  (main): Sequential(
    (0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (1): LeakyReLU(negative_slope=0.2, inplace=True)
    (2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (4): LeakyReLU(negative_slope=0.2, inplace=True)
    (5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (7): LeakyReLU(negative_slope=0.2, inplace=True)
    (8): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
    (9): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (10): LeakyReLU(negative_slope=0.2, inplace=True)
    (11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
    (12): Sigmoid()
  )
)

定義損失函數

# Initialize BCELoss function
criterion = nn.BCELoss()

# Create batch of latent vectors that we will use to visualize
#  the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)

# Establish convention for real and fake labels during training
real_label = 1.
fake_label = 0.

訓練

對GAN網絡的訓練是一個比較玄學的過程,當不收斂的時候調整學習率多嘗試幾次,或者動態(tài)的調整學習率。

# Training Loop

# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0
# Number of training epochs
num_epochs = 150

# Learning rate for optimizers
lr = 0.005

# Beta1 hyperparam for Adam optimizers
beta1 = 0.5


# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))

print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
    # For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):

        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## Train with all-real batch
        netD.zero_grad()
        # Format batch
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
        # Forward pass real batch through D
        output = netD(real_cpu).view(-1)
        # Calculate loss on all-real batch
        errD_real = criterion(output, label)
        # Calculate gradients for D in backward pass
        errD_real.backward()
        D_x = output.mean().item()

        ## Train with all-fake batch
        # Generate batch of latent vectors
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # Generate fake image batch with G
        fake = netG(noise)
        label.fill_(fake_label)
        # Classify all fake batch with D
        output = netD(fake.detach()).view(-1)
        # Calculate D's loss on the all-fake batch
        errD_fake = criterion(output, label)
        # Calculate the gradients for this batch, accumulated (summed) with previous gradients
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        # Compute error of D as sum over the fake and the real batches
        errD = errD_real + errD_fake
        # Update D
        optimizerD.step()

        ############################
        # (2) Update G network: maximize log(D(G(z)))
        ###########################
        netG.zero_grad()
        label.fill_(real_label)  # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake batch through D
        output = netD(fake).view(-1)
        # Calculate G's loss based on this output
        errG = criterion(output, label)
        # Calculate gradients for G
        errG.backward()
        D_G_z2 = output.mean().item()
        # Update G
        optimizerG.step()

        # Output training stats
        if i % 50 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))

        # Save Losses for plotting later
        G_losses.append(errG.item())
        D_losses.append(errD.item())

        # Check how the generator is doing by saving G's output on fixed_noise
        if (iters % 100 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake, padding=2, normalize=True))

        iters += 1
Starting Training Loop...
[0/50][0/49]	Loss_D: 1.0907	Loss_G: 29.8247	D(x): 0.4985	D(G(z)): 0.2701 / 0.0000
[1/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[2/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[3/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[4/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[5/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[6/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[7/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[8/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[9/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[10/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000
[11/50][0/49]	Loss_D: 100.0000	Loss_G: 0.0000	D(x): 1.0000	D(G(z)): 1.0000 / 1.0000

輸入一個隨機值查看GAN生成器生成的效果

noise = torch.randn(b_size, nz, 1, 1, device=device)
fake = netG(noise).detach()
plt.imshow(np.transpose(vutils.make_grid(fake[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))

基于GAN的圖像生成模型

查看真實樣本中圖片

real_batch = next(iter(dataloader))
plt.imshow(np.transpose(vutils.make_grid(real_batch[0][2].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))

基于GAN的圖像生成模型

查看訓練過程中生成器和判別器的損失

plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

基于GAN的圖像生成模型
生成器在不同階段生成的效果

fig = plt.figure(figsize=(8,8))
plt.axis("off")
ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img_list]
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)

HTML(ani.to_jshtml())

基于GAN的圖像生成模型

對比真實數據和fake數據

# Grab a batch of real images from the dataloader
real_batch = next(iter(dataloader))

# Plot the real images
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))

# Plot the fake images from the last epoch
plt.subplot(1,2,2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()

基于GAN的圖像生成模型

結論

從上面的結果來看,對于生成牙刷這樣的場景這個很小的GAN網絡已經可以完成的很好了。文章來源地址http://www.zghlxwxcb.cn/news/detail-406021.html

到了這里,關于基于GAN的圖像生成模型的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網!

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如若轉載,請注明出處: 如若內容造成侵權/違法違規(guī)/事實不符,請點擊違法舉報進行投訴反饋,一經查實,立即刪除!

領支付寶紅包贊助服務器費用

相關文章

  • 圖像生成模型【自編碼器、RNN、VAE、GAN、Diffusion、AIGC等】

    圖像生成模型【自編碼器、RNN、VAE、GAN、Diffusion、AIGC等】

    目錄 監(jiān)督學習 與 無監(jiān)督學習 生成模型 自編碼器 從線性維度壓縮角度: 2D-1D 線性維度壓縮: 3D-2D 推廣線性維度壓縮 流形 自編碼器:流形數據的維度壓縮 全圖像空間 自然圖像流形 自編碼器的去噪效果 自編碼器的問題 圖像預測 (“結構化預測”) 顯式密度模型 RNN PixelRNN [van

    2024年02月10日
    瀏覽(19)
  • PyTorch示例——ResNet34模型和Fruits圖像數據

    PyTorch示例——ResNet34模型和Fruits圖像數據

    ResNet34模型,做圖像分類 數據使用水果圖片數據集,下載見Kaggle Fruits Dataset (Images) Kaggle的Notebook示例見 PyTorch——ResNet34模型和Fruits數據 下面見代碼 查看圖像 展示多張圖片 蘋果 櫻桃 直接使用ImageFolder加載數據,按目錄解析水果類別 輸出如下 ResidualBlock ResNet34 準備代碼 開始

    2024年02月12日
    瀏覽(41)
  • Python用GAN生成對抗性神經網絡判別模型擬合多維數組、分類識別手寫數字圖像可視化...

    Python用GAN生成對抗性神經網絡判別模型擬合多維數組、分類識別手寫數字圖像可視化...

    生成對抗網絡(GAN)是一種神經網絡,可以生成類似于人類產生的材料,如圖像、音樂、語音或文本 ( 點擊文末“閱讀原文”獲取完整 代碼數據 )。 相關視頻 最近我們被客戶要求撰寫關于GAN生成對抗性神經網絡的研究報告,包括一些圖形和統(tǒng)計輸出。 近年來,GAN一直是研

    2024年02月09日
    瀏覽(25)
  • AI之LLM/MLM:Nvidia官網人工智能大模型工具合集(大語言模型/多模態(tài)模型,文本生成/圖像生成/視頻生成)的簡介、使用方法、案例應用之詳細攻略

    AI之LLM/MLM:Nvidia官網人工智能大模型工具合集(大語言模型/多模態(tài)模型,文本生成/圖像生成/視頻生成)的簡介、使用方法、案例應用之詳細攻略

    AI之LLM/MLM:Nvidia官網人工智能大模型工具合集(大語言模型/多模態(tài)模型,文本生成/圖像生成/視頻生成)的簡介、使用方法、案例應用之詳細攻略 目錄 Nvidia官網人工智能大模型工具合集的簡介 1、網站主要功能包括: Nvidia官網人工智能大模型工具合集的使用方法 1、SDXL-Turbo的使

    2024年04月28日
    瀏覽(45)
  • PyTorch訓練簡單的生成對抗網絡GAN

    PyTorch訓練簡單的生成對抗網絡GAN

    同時訓練兩個網絡:辨別器Discriminator 和 生成器Generator Generator是 造假者,用來生成假數據。 Discriminator 是警察,盡可能的分辨出來哪些是造假的,哪些是真實的數據。 目的:使得判別模型盡量犯錯,無法判斷數據是來自真實數據還是生成出來的數據。 GAN的梯度下降訓練過程

    2024年02月12日
    瀏覽(17)
  • 【Pytorch深度學習實戰(zhàn)】(10)生成對抗網絡(GAN)

    【Pytorch深度學習實戰(zhàn)】(10)生成對抗網絡(GAN)

    ???大家好,我是Sonhhxg_柒,希望你看完之后,能對你有所幫助,不足請指正!共同學習交流?? ??個人主頁-Sonhhxg_柒的博客_CSDN博客??? ??歡迎各位→點贊?? + 收藏?? + 留言??? ??系列專欄 - 機器學習【ML】?自然語言處理【NLP】? 深度學習【DL】 ? ???foreword ?說

    2023年04月08日
    瀏覽(31)
  • 學習筆記:Pytorch利用MNIST數據集訓練生成對抗網絡(GAN)

    學習筆記:Pytorch利用MNIST數據集訓練生成對抗網絡(GAN)

    2023.8.27 ? ? ? ?在進行深度學習的進階的時候,我發(fā)了生成對抗網絡是一個很神奇的東西,為什么它可以“將一堆隨機噪聲經過生成器變成一張圖片”,特此記錄一下學習心得。 ? ? ? ? 2014年,還在蒙特利爾讀博士的Ian Goodfellow發(fā)表了論 文《Generative Adversarial Networks》(網址

    2024年02月10日
    瀏覽(20)
  • 生成對抗網絡GAN簡介- 圖像處理應用

    GAN是一種由兩部分組成的神經網絡架構,通常用于生成逼真的圖像。這兩部分是生成器(Generator)和判別器(Discriminator)。 生成器(Generator) :它的目標是創(chuàng)建逼真的圖像。這些圖像是從隨機噪聲開始生成的,生成器試圖使其盡可能接近真實數據分布。 判別器(Discriminat

    2024年01月18日
    瀏覽(22)
  • 對抗生成網絡GAN系列——DCGAN簡介及人臉圖像生成案例

    對抗生成網絡GAN系列——DCGAN簡介及人臉圖像生成案例

    ??作者簡介:禿頭小蘇,致力于用最通俗的語言描述問題 ??往期回顧:對抗生成網絡GAN系列——GAN原理及手寫數字生成小案例 ??近期目標:寫好專欄的每一篇文章 ??支持小蘇:點贊????、收藏?、留言?? 本節(jié)已錄制視頻:DCGAN簡介及人臉圖像生成案例?????? ???

    2024年01月16日
    瀏覽(76)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領取紅包,優(yōu)惠每天領

二維碼1

領取紅包

二維碼2

領紅包