国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

測試大語言模型在嵌入式設(shè)備部署的可能性——模型TinyLlama-1.1B-Chat-v1.0

這篇具有很好參考價值的文章主要介紹了測試大語言模型在嵌入式設(shè)備部署的可能性——模型TinyLlama-1.1B-Chat-v1.0。希望對大家有所幫助。如果存在錯誤或未考慮完全的地方,請大家不吝賜教,您也可以點擊"舉報違法"按鈕提交疑問。

測試模型TinyLlama-1.1B-Chat-v1.0修改推理參數(shù),觀察參數(shù)變化與推理時間變化之間的關(guān)系。
本地環(huán)境:

處理器 Intel? Core? i5-8400 CPU @ 2.80GHz 2.80 GHz
機帶 RAM 16.0 GB (15.9 GB 可用)
集顯 Intel? UHD Graphics 630
獨顯 NVIDIA GeForce GTX 1050

主要測試修改:

outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)

源代碼來源(鏡像):https://hf-mirror.com/TinyLlama/TinyLlama-1.1B-Chat-v1.0文章來源地址http://www.zghlxwxcb.cn/news/detail-861458.html

'''
https://hf-mirror.com/TinyLlama/TinyLlama-1.1B-Chat-v1.0
測試tinyLlama 1.1B效果不錯,比Qwen1.8B經(jīng)過量化的都好很多
'''

# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import os
from datetime import datetime
import torch

os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
from transformers import pipeline

'''
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://hf-mirror.com/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    # {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
    {"role": "user", "content": "你叫什么名字?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
'''

# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...
def load_pipeline():
    pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16,
                    device_map="auto")
    return pipe

def generate_text(content, length=20):
    """
    根據(jù)給定的prompt生成文本
    """
    messages = [
        {
            "role": "提示",
            "content": "這是個友好的聊天機器人...",
        },
        # {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
        {"role": "user", "content": content},
    ]
    prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    datetime1 = datetime.now()
    outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
    print(outputs[0]["generated_text"])
    datetime2 = datetime.now()
    time12_interval = datetime2 - datetime1
    print("時間間隔", time12_interval)
    if False:
        outputs = pipe(prompt, max_new_tokens=32, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
        print(outputs[0]["generated_text"])
        datetime3 = datetime.now()
        time23_interval = datetime3 - datetime2
        print("時間間隔2", time23_interval)
        outputs = pipe(prompt, max_new_tokens=32, do_sample=False, top_k=50)
        print(outputs[0]["generated_text"])
        datetime4 = datetime.now()
        time34_interval = datetime4 - datetime3
        print("時間間隔3", time34_interval)
        outputs = pipe(prompt, max_new_tokens=32, do_sample=True, temperature=0.7, top_k=30, top_p=0.95)
        print(outputs[0]["generated_text"])
        datetime5 = datetime.now()
        time45_interval = datetime5 - datetime4
        print("時間間隔4", time45_interval)
        outputs = pipe(prompt, max_new_tokens=32, do_sample=False, top_k=30)
        print(outputs[0]["generated_text"])
        datetime6 = datetime.now()
        time56_interval = datetime6 - datetime5
        print("時間間隔5", time56_interval)
        outputs = pipe(prompt, max_new_tokens=12, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
        print(outputs[0]["generated_text"])
        datetime7 = datetime.now()
        time67_interval = datetime7 - datetime6
        print("時間間隔6", time67_interval)

    '''
    結(jié)論:修改top_p不會顯著降低推理時間,并且中英文相同的問題,中文問題推理時間是英文的兩倍
    do_sample修改成False基本不會降低推理時間
    只有max_new_tokens才能顯著降低推理時間,但是max_new_tokens與推理時間不是呈線性關(guān)系
    比如max_new_tokens=256,推理時間2分鐘
    當(dāng)max_new_tokens=32的時候,推理時間才會變成約1分鐘
    因此,不如將max_new_tokens設(shè)置大些用于獲取比較完整的答案
    '''

    return outputs

if __name__ == "__main__":
    '''
    main function
    '''
    global pipe
    pipe = load_pipeline()

    # print('load pipe ok')

    while True:
        prompt = input("請輸入一個提示(或輸入'exit'退出):")
        if prompt.lower() == 'exit':
            break
        try:
            generated_text = generate_text(prompt)
            print("生成的文本:")
            print(generated_text[0]["generated_text"])
        except Exception as e:
            print("發(fā)生錯誤:", e)
請輸入一個提示(或輸入'exit'退出):如何開門?
<|user|>
如何開門?</s>
<|assistant|>
Certainly! Opening a door is a simple process that involves several steps. Here are the general steps to follow to open a door:

1. Turn off the lock: Turn off the lock with the key by pressing the "lock" button.

2. Press the handle: Use the handle to push the door open. If the door is mechanical, you may need to turn a knob or pull the door handle to activate the door.

3. Release the latch: Once the door is open, release the latch by pulling it backward.

4. Slide the door: Slide the door forward by pushing it against the wall with your feet or using a push bar.

5. Close the door: Once the door is open, close it by pressing the lock button or pulling the handle backward.

6. Use a second key: If the lock has a second key, make sure it is properly inserted and then turn it to the correct position to unlock the door.

Remember to always double-check the locks before opening a door, as some locks can be tricky to open. If you're unsure about the correct procedure for opening a door,
時間間隔 0:04:23.561065
生成的文本:
<|user|>
如何開門?</s>
<|assistant|>
Certainly! Opening a door is a simple process that involves several steps. Here are the general steps to follow to open a door:

1. Turn off the lock: Turn off the lock with the key by pressing the "lock" button.

2. Press the handle: Use the handle to push the door open. If the door is mechanical, you may need to turn a knob or pull the door handle to activate the door.

3. Release the latch: Once the door is open, release the latch by pulling it backward.

4. Slide the door: Slide the door forward by pushing it against the wall with your feet or using a push bar.

5. Close the door: Once the door is open, close it by pressing the lock button or pulling the handle backward.

6. Use a second key: If the lock has a second key, make sure it is properly inserted and then turn it to the correct position to unlock the door.

Remember to always double-check the locks before opening a door, as some locks can be tricky to open. If you're unsure about the correct procedure for opening a door,
請輸入一個提示(或輸入'exit'退出):

到了這里,關(guān)于測試大語言模型在嵌入式設(shè)備部署的可能性——模型TinyLlama-1.1B-Chat-v1.0的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實不符,請點擊違法舉報進行投訴反饋,一經(jīng)查實,立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費用

相關(guān)文章

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包