国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》

這篇具有很好參考價(jià)值的文章主要介紹了論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問(wèn)。

3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction

Targetdiff
ICLR 2023
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能

1、Contributions

*一個(gè)端到端的框架,用于在蛋白靶點(diǎn)條件下生成分子,該框架明確考慮了蛋白質(zhì)和分子在三維空間中的物理相互作用。
*就我們所知,這是針對(duì)靶向藥物設(shè)計(jì)的第一個(gè)概率擴(kuò)散公式,其中訓(xùn)練和采樣過(guò)程以非自回歸和SE(3)-等變的方式對(duì)齊,這得益于移位中心操作和等變GNN。
*提出了幾個(gè)新的評(píng)估指標(biāo)和額外的見(jiàn)解,使我們能夠在許多不同的維度上評(píng)估模型生成的分子。實(shí)證結(jié)果證明了我們的模型優(yōu)于另外兩個(gè)代表性基準(zhǔn)模型。
*提出了一種基于我們的框架評(píng)估生成分子質(zhì)量的有效方法,其中模型可以作為評(píng)分函數(shù)來(lái)幫助排名,或者作為無(wú)監(jiān)督特征提取器來(lái)提高結(jié)合親和力預(yù)測(cè)的準(zhǔn)確性。

2、Problem definition

A protein binding site is represented as a set of atoms P = ( x P ( i ) , v P ( i ) ) i = 1 N P P = {(x^{(i)}_P , v^{(i)}_P )}^{N_P}_{i=1} P=(xP(i)?,vP(i)?)i=1NP??, where N P N_P NP? is the number of protein atoms, x P ∈ R 3 x_P ∈ R^3 xP?R3 represents the 3D coordinates of the atom, and v P ∈ R N f v_P ∈ R^{N_f} vP?RNf? represents protein atom features such as element types and amino acid types. Our goal is to generate binding molecules M = ( x L ( i ) , v L ( i ) ) i = 1 L M M = {(x^{(i)}_L , v^{(i)}_L )}^{L_M}_{i=1} M=(xL(i)?,vL(i)?)i=1LM?? conditioned on the protein target. For brevity, we denote molecules as M = [x, v], where [·, ·] is the concatenation operator and x ∈ R M × 3 x ∈ R^{M×3} xRM×3 and v ∈ R M × K v ∈ R^{M×K} vRM×K denote atom Cartesian coordinates and one-hot atom types respectively.

3、Molecular diffusion process

use a Gaussian distribution N N N to model continuous atom coordinates x and a categorical distribution C to model discrete atom types v. The atom types are constructed as a one-hot vector containing information such as element types and membership in an aromatic ring. We formulate the molecular distribution as a product of atom coordinate distribution and atom type distribution. At each time step t, a small Gaussian noise and a uniform noise across all categories are added to atom coordinates and atom types separately, according to a Markov chain with fixed variance schedules β1, . . . , βT (K為k維的平均噪聲向量)(實(shí)際上x(chóng),v的調(diào)度不一致):
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
Denoting α t = 1 ? β t αt = 1 ? β_t αt=1?βt? and 論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
a desirable property of the diffusion process is to calculate the noisy data distribution q ( M t ∣ M 0 ) q(M_t|M_0) q(Mt?M0?) of any time step in closed-form(用閉合形式直接求出每個(gè)時(shí)間步時(shí)數(shù)據(jù)分布):論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
Using Bayes theorem, the normal posterior of atom coordinates and categorical posterior of atom types can both be computed in closed-form(通過(guò)貝葉斯公式求出后驗(yàn)分布):
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能

4、Molecular generative process

The generative process, on reverse, will recover the ground truth molecule M0 from the initial noise MT , and we approximate the reverse distribution with a neural network parameterized by θ(t、P已知,Mt也已知,求μθ 、cθ):
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
There are different ways to parameterize μ θ ( [ x t , v t ] , t , P ) μ_θ([x_t, v_t], t, P) μθ?([xt?,vt?],t,P) and c θ ( [ x t , v t ] , t , P ) c_θ([x_t, v_t], t, P) cθ?([xt?,vt?],t,P). Here, we choose to let the neural network predict [ x 0 , v 0 ] [x_0, v_0] [x0?,v0?] and feed it through equation 4 to obtain μ θ μ_θ μθ? and c θ c_θ cθ? which define the posterior distributions. we model the interaction between the ligand molecule atoms and the protein atoms with a SE(3)-Equivariant GNN:
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
At the l-th layer, the atom hidden embedding h(原子隱藏嵌入) and coordinates x(原子的坐標(biāo)) are updated alternately as follows:
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
where d i j = ‖ x i ? x j ‖ d_{ij} = ‖x_i ? x_j‖ dij?=xi??xj? is the euclidean distance(原子間歐幾里德距離) between two atoms i and j and eij is an additional feature(兩兩原子間連接特征,可以視為鄰接矩陣來(lái)描述原子之間的聯(lián)系或連接類型) indicating the connection is between protein atoms, ligand atoms or protein atom and ligand atom. 1mol is the ligand molecule mask since we do not want to update protein atom coordinates. The initial atom hidden embedding h 0 h^0 h0 is obtained by an embedding layer that encodes the atom information. The final atom hidden embedding h L h^L hL is fed into a multi-layer perceptron and a softmax function to obtain ? v 0 ? v_0 ?v0?. Since ? x 0 ? x_0 ?x0? is rotation equivariant to x t x_t xt? and it is easy to see x t ? 1 x_{t?1} xt?1? is rotation equivariant to x 0 x_0 x0? according to equation 4, we achieve the desired equivariance for Markov transition.
注:the likelihood p θ ( M 0 ∣ P ) p_θ(M_0|P) pθ?(M0?P) should be invariant to translation and rotation of the protein-ligand complex. Denoting the SE(3)-transformation as T g T_g Tg?, we could achieve invariant likelihood w.r.t T g T_g Tg? on the protein-ligand complex: p θ ( T g ( M 0 ∣ P ) ) = p θ ( M 0 ∣ P ) p_θ(T_g(M_0|P)) = p_θ(M_0|P) pθ?(Tg?(M0?P))=pθ?(M0?P) if we shift the Center of Mass (CoM) of protein atoms to zero and parameterize the Markov transition p ( x t ? 1 ∣ x t , x P ) p(x_{t?1}|x_t, x_P ) p(xt?1?xt?,xP?) with an SE(3)-equivariant network.

5、Training

The combination of q and p is a variational auto-encoder (Kingma and Welling, 2013). The model can be trained by optimizing the variational bound on negative log likelihood. For the atom coordinate loss, since q ( x t ? 1 ∣ x t , x 0 ) q(x_{t?1}|x_t, x_0) q(xt?1?xt?,x0?) and p θ ( x t ? 1 ∣ x t ) p_θ(x_{t?1}|x_t) pθ?(xt?1?xt?) are both Gaussian distributions, the KL-divergence can be written in closed form:
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
where 論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
and C C C is a constant. In practice, training the model with an unweighted MSE loss (set γ t γ_t γt? = 1) could also achieve better performance as Ho et al. (2020) suggested. For the atom type loss, we can directly compute KL-divergence of categorical distributions as follows:
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
The final loss is a weighted sum of atom coordinate loss and atom type loss: L = L t ? 1 ( x ) + λ L t ? 1 ( v ) L = L^{(x)}_{t?1} + λL^{(v)}_{t?1} L=Lt?1(x)?+λLt?1(v)?. We summarize the overall training and sampling procedure of TargetDiff in Appendix E.
(1) training
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
(2) sampling
At the l-th layer, we dynamically construct the protein-ligand complex as a k-nearest neighbors (knn) graph based on known protein atom coordinates and current ligand atom coordinates, which is the output of the l ? 1-th layer. We choose k = 32 in our experiments. The protein atom features include chemical elements, amino acid types and whether the atoms are backbone atoms. The ligand atom types are one-hot vectors consisting of the chemical element types and aromatic information. The edge features are the outer products of distance embedding and bond types, where we expand the distance with radial basis functions located at 20 centers between 0 ? A and 10 ? A and the bond type is a 4-dim one-hot vector indicating the connection is between protein atoms, ligand atoms, protein-ligand atoms or ligand-protein atoms.
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能

6、Experiments

Data:Crossocked2022
Baseline:liGAN、AR、Pocket2Mol、GraphBP
Targetiff:Our model contains 9 equivariant layers described in equation 7, where fh and fx are specifically implemented as graph attention layers with 16 attention heads and 128 hidden features. We first decide on the number of atoms for sampling by drawing a prior distribution estimated from training complexes with similar binding pocket sizes. After the model finishes the generative process, we then use OpenBabel (O’Boyle et al., 2011) to construct the molecule from individual atom coordinates as done in AR and liGAN.

7、Results

論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能

8、Target Binding Affinity

We first establish the connection between unsupervised generative models and binding affinity ranking / prediction. Under our parameterization, the network predicts the denoised [ ? x 0 , ? v 0 ] [? x_0, ? v_0] [?x0?,?v0?]. Given the protein-ligand complex, we can feed φ θ φ_θ φθ? with [ x 0 , v 0 ] [x_0, v_0] [x0?,v0?] while freezing the x-update branch (i.e. only atom hidden embedding h h h is updated), and we could finally obtain h L h^L hL and ? v 0 ? v_0 ?v0?:
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能
Our assumption is that if the ligand molecule has a good binding affinity to protein, the flexibility of atom types should be low, which could be reflected in the entropy of ? v 0 ? v_0 ?v0?(v_ent). Therefore, it can be used as a scoring function to help ranking, whose effectiveness is justified in the experiments. In addition, hL also includes useful global information. We found the binding affinity ranking performance can be greatly improved by utilizing this feature with a simple linear transformation.
論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》,三維藥物分子設(shè)計(jì),人工智能文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-860669.html

到了這里,關(guān)于論文簡(jiǎn)讀《3D Equivariant Diffusion For Target-Aware Molecule Generation and Affinity Prediction》的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來(lái)自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場(chǎng)。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • CVPR 2023 | 風(fēng)格遷移論文3篇簡(jiǎn)讀,視覺(jué)AIGC系列

    CVPR 2023 | 風(fēng)格遷移論文3篇簡(jiǎn)讀,視覺(jué)AIGC系列

    內(nèi)容相似度損失(包括特征和像素相似度)是逼真和視頻風(fēng)格遷移中出現(xiàn)偽影的主要問(wèn)題。本文提出了一個(gè)名為CAP-VSTNet的新框架,包括一個(gè)新的可逆殘差網(wǎng)絡(luò)(reversible residual network)和一個(gè)無(wú)偏線性變換模塊,用于多功能風(fēng)格轉(zhuǎn)移。這個(gè)可逆殘差網(wǎng)絡(luò)不僅可以保留內(nèi)容關(guān)聯(lián)性

    2024年02月11日
    瀏覽(29)
  • 基于 Transformation-Equivariant 的自動(dòng)駕駛 3D 目標(biāo)檢測(cè)

    基于 Transformation-Equivariant 的自動(dòng)駕駛 3D 目標(biāo)檢測(cè)

    論文地址:https://arxiv.org/abs/2211.11962 論文代碼:https://github.com/hailanyi/TED 三維場(chǎng)景中的物體分布有不同的方向。普通探測(cè)器不明確地模擬旋轉(zhuǎn)和反射變換的變化。需要大的網(wǎng)絡(luò)和廣泛的數(shù)據(jù)增強(qiáng)來(lái)進(jìn)行魯棒檢測(cè)。 equivariant networks 通過(guò)在多個(gè)變換點(diǎn)云上應(yīng)用共享網(wǎng)絡(luò)顯式地模擬

    2024年02月09日
    瀏覽(22)
  • 《論文閱讀21》Equivariant Multi-View Networks

    《論文閱讀21》Equivariant Multi-View Networks

    研究領(lǐng)域:計(jì)算機(jī)視覺(jué) | 多視角數(shù)據(jù)處理中實(shí)現(xiàn) 等變性 論文:Equivariant Multi-View Networks ICCV 2019 論文鏈接 視頻鏈接 在計(jì)算機(jī)視覺(jué)中,模型在不同視角下對(duì)數(shù)據(jù)(例如,點(diǎn)云、圖像等)對(duì)數(shù)據(jù)的變化具有一定的響應(yīng)性。為了使模型能夠更好地適應(yīng)這種變化,不是僅僅對(duì)某個(gè)特定

    2024年02月10日
    瀏覽(18)
  • 論文筆記:E(n) Equivariant Graph Neural Networks

    論文筆記:E(n) Equivariant Graph Neural Networks

    ????????本文介紹了一種新模型來(lái)學(xué)習(xí)與旋轉(zhuǎn)、平移、反射和排列等變的圖神經(jīng)網(wǎng)絡(luò),稱為 E(n)-等變圖神經(jīng)網(wǎng)絡(luò) (EGNN)。 ???????? 與現(xiàn)有方法相比,EGNN不需要在中間層中計(jì)算昂貴的高階表示,同時(shí)仍能獲得有競(jìng)爭(zhēng)力或更好的性能。 此外,雖然現(xiàn)有方法僅限于 3 維空間的

    2023年04月08日
    瀏覽(29)
  • 《3D Diffusion Policy》論文閱讀

    《3D Diffusion Policy》論文閱讀

    本文僅是個(gè)人對(duì)該文章的閱讀總結(jié),并不能全篇概括作者的精華,還需大家詳細(xì)閱讀原文 --------------------------------------------------------------------------------------------------------------------------------- 問(wèn)題: 模仿學(xué)習(xí)為教授機(jī)器人靈巧技能提供了一種高效途徑,但是學(xué)習(xí)復(fù)雜的、具有普

    2024年04月11日
    瀏覽(17)
  • [讀論文][backbone]Knowledge Diffusion for Distillation

    DiffKD 摘要 The representation gap between teacher and student is an emerging topic in knowledge distillation (KD). To reduce the gap and improve the performance, current methods often resort to complicated training schemes, loss functions, and feature alignments, which are task-specific and feature-specific. In this paper, we state that the essence of the

    2024年02月08日
    瀏覽(32)
  • Multi Diffusion: Fusing Diffusion Paths for Controlled Image Generation——【論文筆記】

    Multi Diffusion: Fusing Diffusion Paths for Controlled Image Generation——【論文筆記】

    本文發(fā)表于ICML 2023 論文官網(wǎng):MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation ? ????????文本到圖像生成模型已經(jīng)具有合成高質(zhì)量和多樣化圖像的能力,但是由于難以為用戶提供對(duì)生成內(nèi)容的直觀控制,因此將文本到圖像模型部署到現(xiàn)實(shí)世界的應(yīng)用程序仍然具有挑戰(zhàn)

    2024年02月02日
    瀏覽(31)
  • 論文閱讀--Diffusion Models for Reinforcement Learning: A Survey

    一、論文概述 本文主要內(nèi)容是關(guān)于在強(qiáng)化學(xué)習(xí)中應(yīng)用擴(kuò)散模型的綜述。文章首先介紹了強(qiáng)化學(xué)習(xí)面臨的挑戰(zhàn),以及擴(kuò)散模型如何解決這些挑戰(zhàn)。接著介紹了擴(kuò)散模型的基礎(chǔ)知識(shí)和在強(qiáng)化學(xué)習(xí)中的應(yīng)用方法。然后討論了擴(kuò)散模型在強(qiáng)化學(xué)習(xí)中的不同角色,并對(duì)其在多個(gè)應(yīng)用領(lǐng)域

    2024年03月20日
    瀏覽(29)
  • 論文閱讀《Hierarchical Aggregation for 3D Instance Segmentation》

    論文閱讀《Hierarchical Aggregation for 3D Instance Segmentation》

    Hierarchical Aggregation for 3D Instance Segmentation是一個(gè)用于實(shí)例分割的方法,他主要利用了點(diǎn)以及點(diǎn)集之間的空間關(guān)系,以此進(jìn)行實(shí)例分割。大概步驟如下: 首先進(jìn)行低帶寬點(diǎn)匯集得到初步的實(shí)例以避免過(guò)度分割 之后進(jìn)行動(dòng)態(tài)帶寬集合匯集以得到完整的實(shí)例 引入實(shí)例內(nèi)網(wǎng)絡(luò)進(jìn)行去

    2024年02月04日
    瀏覽(30)
  • 讀論文--Token Merging for Fast Stable Diffusion(用于快速Diffusion模型的tome技術(shù))

    摘要 The landscape of image generation has been forever changed by open vocabulary diffusion models. However, at their core these models use transformers, which makes generation slow. Better implementations to increase the throughput of these transformers have emerged, but they still evaluate the entire model. In this paper, we instead speed up diffusion m

    2024年02月09日
    瀏覽(19)

覺(jué)得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包