- <Large-capacity Image Steganography Based on Invertible Neural Networks>CVPR2021;可逆網(wǎng)絡(luò)ISN,大容量的實(shí)現(xiàn)是靠RGB通道的累加;無公開代碼
- <Multitask Identity-Aware Image Steganography via Minimax Optimization>IEEE Transactions on Image Processing2021;提出直接識(shí)別防止接收端泄密、其中恢復(fù)分支可選;主要涉及身份信息;有公開代碼GitHub - jiabaocui/MIAIS
- <HiNet: Deep Image Hiding by Invertible Network>ICCV2021;可逆網(wǎng)絡(luò)HiNet;與ISN同期首次在圖像隱藏運(yùn)用可逆網(wǎng)絡(luò),未實(shí)現(xiàn)大容量以及串聯(lián)分階段隱藏,強(qiáng)調(diào)可逆網(wǎng)絡(luò)的性能優(yōu)勢;有公開代碼GitHub - TomTomTommi/HiNet: Official PyTorch implementation of "HiNet: Deep Image Hiding by Invertible Network" (ICCV 2021)
- <Breaking Robust Data Hiding in Online Social Networks>IEEE Signal Processing Letters 2022;隱寫分析;OSN背景(FUDAN);不需要原始載體圖像,直接輸入隱寫圖像,輸出質(zhì)量略有提升的載體圖像;三個(gè)模塊分別:去除隱藏的秘密數(shù)據(jù)、增強(qiáng)圖像質(zhì)量和提高整體性能;無公開代碼
- <Image Generation Network for Covert Transmission in Online Social Network>ACMMM2022;圖像隱寫,OSN背景(FUDAN);無覆蓋式(沒載體圖),生成模塊 對(duì)抗模塊 提取模塊 噪聲模塊,輸入秘密和目標(biāo)表情,生成含有秘密的表情包人臉圖;無工開代碼
- <Robust Invertible Image Steganography>CVPR2022;可逆網(wǎng)絡(luò) 強(qiáng)調(diào)魯棒; 魯棒靠載體增強(qiáng)模塊實(shí)現(xiàn)(消除收到的載密圖像噪聲以及JPEG壓縮失真的影響);無公開代碼
- <Image Disentanglement Autoencoder for Steganography Without Embedding>CVPR2022;無嵌入生成隱寫 解糾纏自動(dòng)編碼器,直接生成stego,不需要載體圖像,分成結(jié)構(gòu)和紋理兩種表示,并用結(jié)構(gòu)紋理的多種組合形成多種隱寫圖像,再提取結(jié)構(gòu)信息恢復(fù)秘密;有公開代碼GitHub - Lemok00/IDEAS: Official pytorch implementation of paper "Image Disentanglement Autoencoder for Steganography without Embedding" (CVPR2022).
- <Fixed Neural Network Steganography: Train The Images, Not The Network>ICLR2022;FNNS 是在steganoGAN上的改進(jìn);主要強(qiáng)調(diào)降低解碼錯(cuò)誤率:在3bpp的情況下實(shí)現(xiàn)精確的0%錯(cuò)誤率;有代碼GitHub - varshakishore/FNNS
- <Generative Steganography Network>ACMMM2022;無嵌入生成隱寫:根據(jù)輸入對(duì)(潛在向量和噪聲/秘密信息)不同,可選擇生成cover還是stego;無公開代碼
- <StegGAN: hiding image within image using conditional generative adversarial networks>Multimedia Tools and Applications2022;有公開代碼GitHub - brijeshiitg/StegGAN
- <Large-capacity and Flexible Video Steganography via Invertible Neural Network>CVPR2023;視頻隱寫;可以在一個(gè)載體視頻中隱藏最多7個(gè)秘密視頻;提出一種秘鑰可控方案;多視頻隱藏可變數(shù)量方案;有代碼Large-capacity and Flexible Video Steganography via Invertible Neural Network | Papers With Code
- <DeepMIH: Deep Invertible Network for Multiple Image Hiding>TPAMI2023;可逆網(wǎng)絡(luò)hinet升級(jí)版,強(qiáng)調(diào)串聯(lián)多圖像隱藏,有imp模塊引導(dǎo)第二次嵌入;有感知損失;做了頻域子帶分離試驗(yàn),結(jié)論是高頻子帶適合隱藏信息;有代碼,和hinet一個(gè)作者主頁
- <SteganoGAN: High Capacity Image Steganography with GANs>2019;Jupiter; 解碼器 編碼器 判別器;有代碼SteganoGAN: High Capacity Image Steganography with GANs | Papers With Code
- ?<HiDDeN: Hiding Data With Deep Networks>2018ECCV;代碼:GitHub - ando-khachatryan/HiDDeN: Pytorch implementation of paper "HiDDeN: Hiding Data With Deep Networks" by Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei
-
<RoSteALS: Robust Steganography using Autoencoder Latent Space>2023CVPR;針對(duì)現(xiàn)有方法因?yàn)楸WC圖像質(zhì)量和抗擾動(dòng)魯棒性導(dǎo)致的訓(xùn)練復(fù)雜的問題,提出了一種凍結(jié)預(yù)訓(xùn)練編碼器的訓(xùn)練簡單的輕量級(jí)網(wǎng)絡(luò)。GitHub - TuBui/RoSteALS: RoSteALS: Robust Steganography using Autoencoder Latent Space文章來源地址http://www.zghlxwxcb.cn/news/detail-845810.html
- <Towards Robust Data Hiding Against (JPEG) Compression: A Pseudo-Differentiable Deep Learning Approach>2020;針對(duì)(jpeg)壓縮的穩(wěn)健數(shù)據(jù)隱藏:一種偽可微深度學(xué)習(xí)方法mikolez/Robust_JPEG · GitHub
- <Robust Image Steganography: Hiding Messages in Frequency Coefficients>2023AAAI;基于INN的魯棒隱寫方法;尤其是針對(duì)JPEG壓縮具有良好魯棒性;秘密信息形式為二進(jìn)制;無公開代碼
- <MBRS:Enhancing Robustness of DNN-based Watermarking by Mini-Batch of Real and Simulated JPEG>MM '21;對(duì)于不同的小批量,隨機(jī)選擇真實(shí)JPEG、模擬JPEG和無噪聲層中的一個(gè)作為噪聲層;魯棒方法;有代碼jzyustc/MBRS: This is the source code of paper MBRS : Enhancing Robustness of DNN-based Watermarking by Mini-Batch of Real and Simulated JPEG Compression, which is received by ACM MM' 21. (github.com)
文章來源:http://www.zghlxwxcb.cn/news/detail-845810.html
到了這里,關(guān)于【論文閱讀】圖像信息隱藏文章匯總(含代碼)的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!