国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì)

這篇具有很好參考價(jià)值的文章主要介紹了LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì)。希望對大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問。

本文首發(fā)于公眾號:機(jī)器感知

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì)

EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

Large language models (LLMs) have proven to be very superior to conventional methods in various tasks. However, their expensive computations and high memory requirements are prohibitive for deployment. Model quantization is an effective method for reducing this overhead. The problem is that in most previous works, the quantized model was calibrated using few samples from the training data, which might affect the generalization of the quantized LLMs to unknown cases and tasks. Hence in this work, we explore an important question: Can we design a data-independent quantization method for LLMs to guarantee its generalization performance? In this work, we propose EasyQuant, a training-free and data-independent weight-only quantization algorithm for LLMs. Our observation indicates that two factors: outliers in the weight and quantization ranges, are essential for reducing the quantization error. Therefore, in EasyQuant, we leave the outliers (less than 1%) unchanged and optimize the quantization range to reduce the reconstruction error. With these methods, we surprisingly find that EasyQuant achieves comparable performance to the original model. Since EasyQuant does not depend on any training data, the generalization performance of quantized LLMs is safely guaranteed. Moreover, EasyQuant can be implemented in parallel so that the quantized model could be attained in a few minutes even for LLMs over 100B. To our best knowledge, we are the first work that achieves almost lossless quantization performance for LLMs under a data-independent setting and our algorithm runs over 10 times faster than the data-dependent methods.

Tuning-Free Noise Rectification for High Fidelity Image-to-Video Generation

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

Image-to-video (I2V) generation tasks always suffer from keeping high fidelity in the open domains. Traditional image animation techniques primarily focus on specific domains such as faces or human poses, making them difficult to generalize to open domains. Several recent I2V frameworks based on diffusion models can generate dynamic content for open domain images but fail to maintain fidelity. We found that two main factors of low fidelity are the loss of image details and the noise prediction biases during the denoising process. To this end, we propose an effective method that can be applied to mainstream video diffusion models. This method achieves high fidelity based on supplementing more precise image information and noise rectification. Specifically, given a specified image, our method first adds noise to the input image latent to keep more details, then denoises the noisy latent with proper rectification to alleviate the noise prediction biases. Our method is tuning-free and plug-and-play. The experimental results demonstrate the effectiveness of our approach in improving the fidelity of generated videos. For more image-to-video generated results, please refer to the project website: https://noise-rectification.github.io.

Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for ?Low-Light Image Enhancement

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

Diffusion model-based low-light image enhancement methods rely heavily on paired training data, leading to limited extensive application. Meanwhile, existing unsupervised methods lack effective bridging capabilities for unknown degradation. To address these limitations, we propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED. It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains and successfully alleviates the dependence on pairwise training data via zero-reference learning. Specifically, we first design the initial optimization network to preprocess the input image and implement bidirectional constraints between the diffusion model and the initial optimization network through multiple objective functions. Subsequently, the degradation factors of the real-world scene are optimized iteratively to achieve effective light enhancement. In addition, we explore a frequency-domain based and semantically guided appearance reconstruction module that encourages feature alignment of the recovered image at a fine-grained level and satisfies subjective expectations. Finally, extensive experiments demonstrate the superiority of our approach to other state-of-the-art methods and more significant generalization capabilities. We will open the source code upon acceptance of the paper.

MMoFusion: Multi-modal Co-Speech Motion Generation with Diffusion Model

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

The body movements accompanying speech aid speakers in expressing their ideas. Co-speech motion generation is one of the important approaches for synthesizing realistic avatars. Due to the intricate correspondence between speech and motion, generating realistic and diverse motion is a challenging task. In this paper, we propose MMoFusion, a Multi-modal co-speech Motion generation framework based on the diffusion model to ensure both the authenticity and diversity of generated motion. We propose a progressive fusion strategy to enhance the interaction of inter-modal and intra-modal, efficiently integrating multi-modal information. Specifically, we employ a masked style matrix based on emotion and identity information to control the generation of different motion styles. Temporal modeling of speech and motion is partitioned into style-guided specific feature encoding and shared feature encoding, aiming to learn both inter-modal and intra-modal features. Besides, we propose a geometric loss to enforce the joints' velocity and acceleration coherence among frames. Our framework generates vivid, diverse, and style-controllable motion of arbitrary length through inputting speech and editing identity and emotion. Extensive experiments demonstrate that our method outperforms current co-speech motion generation methods including upper body and challenging full body.

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos. Rectified flow is a recent generative model formulation that connects data and noise in a straight line. Despite its better theoretical properties and conceptual simplicity, it is not yet decisively established as standard practice. In this work, we improve existing noise sampling techniques for training rectified flow models by biasing them towards perceptually relevant scales. Through a large-scale study, we demonstrate the superior performance of this approach compared to established diffusion formulations for high-resolution text-to-image synthesis. Additionally, we present a novel transformer-based architecture for text-to-image generation that uses separate weights for the two modalities and enables a bidirectional flow of information between image and text tokens, improving text comprehension, typography, and human preference ratings. We demonstrate that this architecture follows predictable scaling trends and correlates lower validation loss to improved text-to-image synthesis as measured by various metrics and human evaluations. Our largest models outperform state-of-the-art models, and we will make our experimental data, code, and model weights publicly available.

FAR: Flexible, Accurate and Robust 6DoF Relative Camera Pose Estimation

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

Estimating relative camera poses between images has been a central problem in computer vision. Methods that find correspondences and solve for the fundamental matrix offer high precision in most cases. Conversely, methods predicting pose directly using neural networks are more robust to limited overlap and can infer absolute translation scale, but at the expense of reduced precision. We show how to combine the best of both methods; our approach yields results that are both precise and robust, while also accurately inferring translation scales. At the heart of our model lies a Transformer that (1) learns to balance between solved and learned pose estimations, and (2) provides a prior to guide a solver. A comprehensive analysis supports our design choices and demonstrates that our method adapts flexibly to various feature extractors and correspondence estimators, showing state-of-the-art performance in 6DoF pose estimation on Matterport3D, InteriorNet, StreetLearn, and Map-free Relocalization.

A Spatio-temporal Aligned SUNet Model for Low-light Video Enhancement

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

Distortions caused by low-light conditions are not only visually unpleasant but also degrade the performance of computer vision tasks. The restoration and enhancement have proven to be highly beneficial. However, there are only a limited number of enhancement methods explicitly designed for videos acquired in low-light conditions. We propose a Spatio-Temporal Aligned SUNet (STA-SUNet) model using a Swin Transformer as a backbone to capture low light video features and exploit their spatio-temporal correlations. The STA-SUNet model is trained on a novel, fully registered dataset (BVI), which comprises dynamic scenes captured under varying light conditions. It is further analysed comparatively against various other models over three test datasets. The model demonstrates superior adaptivity across all datasets, obtaining the highest PSNR and SSIM values. It is particularly effective in extreme low-light conditions, yielding fairly good visualisation results.

NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models

LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì),人工智能,深度學(xué)習(xí),transformer,stable diffusion,機(jī)器學(xué)習(xí)

While recent large-scale text-to-speech (TTS) models have achieved significant progress, they still fall short in speech quality, similarity, and prosody. Considering speech intricately encompasses various attributes (e.g., content, prosody, timbre, and acoustic details) that pose significant challenges for generation, a natural idea is to factorize speech into individual subspaces representing different attributes and generate them individually. Motivated by it, we propose NaturalSpeech 3, a TTS system with novel factorized diffusion models to generate natural speech in a zero-shot way. Specifically, 1) we design a neural codec with factorized vector quantization (FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and acoustic details; 2) we propose a factorized diffusion model to generate attributes in each subspace following its corresponding prompt. With this factorization design, NaturalSpeech 3 can effectively and efficiently model the intricate speech with disentangled subspaces in a divide-and-conquer way. Experiments show that NaturalSpeech 3 outperforms the state-of-the-art TTS systems on quality, similarity, prosody, and intelligibility. Furthermore, we achieve better performance by scaling to 1B parameters and 200K hours of training data.文章來源地址http://www.zghlxwxcb.cn/news/detail-838998.html

到了這里,關(guān)于LLM量化、高保真圖生視頻、多模態(tài)肢體運(yùn)動(dòng)生成、高分辨率圖像合成、低光圖像/視頻增強(qiáng)、相機(jī)相對姿態(tài)估計(jì)的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • 【Axure高保真原型】日期時(shí)間選擇器

    今天和大家分享日期時(shí)間下拉列表選擇器的原型模板,該模板用中繼器結(jié)合時(shí)間函數(shù)制作,所以可以獲取真實(shí)的日歷效果,具體包括哪一年二月份有29天,幾號對應(yīng)星期幾,都是真實(shí)的。這個(gè)原型用Axure原生元件組成,所以樣式以及后續(xù)的交互都可以根據(jù)需要修改 【原型預(yù)覽

    2024年02月12日
    瀏覽(26)
  • 【論文閱讀】Neuralangelo:高保真神經(jīng)表面重建

    【論文閱讀】Neuralangelo:高保真神經(jīng)表面重建

    paper project 神經(jīng)表面重建已被證明對于通過基于圖像的神經(jīng)渲染恢復(fù)密集的 3D 表面非常有效。然而,當(dāng)前的方法難以恢復(fù)真實(shí)場景的詳細(xì)結(jié)構(gòu)。為了解決這個(gè)問題,我們提出了 Neuralangelo,它將多分辨率 3D 哈希網(wǎng)格的表示能力與神經(jīng)表面渲染相結(jié)合。兩個(gè)關(guān)鍵因素使我們的方

    2024年02月11日
    瀏覽(89)
  • 【Axure高保真原型】物理架構(gòu)圖模板

    【Axure高保真原型】物理架構(gòu)圖模板

    今天和粉絲們免費(fèi)分享物理架構(gòu)圖模板的原型模板~~~ 物理架構(gòu)圖是指在計(jì)算機(jī)系統(tǒng)、網(wǎng)絡(luò)、軟件應(yīng)用等領(lǐng)域中,用于表示物理組件、設(shè)備、連接方式以及它們之間關(guān)系的圖示。它以圖形化的方式展示了系統(tǒng)的實(shí)際物理結(jié)構(gòu),常見的物理架構(gòu)圖元素包括: 1、服務(wù)器:表示物理

    2024年02月13日
    瀏覽(24)
  • 【Axure高保真原型】多圖表動(dòng)態(tài)切換

    【Axure高保真原型】多圖表動(dòng)態(tài)切換

    今天和大家分享多圖表動(dòng)態(tài)切換的原型模板,點(diǎn)擊不同的圖標(biāo)可以動(dòng)態(tài)切換對應(yīng)的表,包括柱狀圖、條形圖、餅圖、環(huán)形圖、折線圖、曲線圖、面積圖、階梯圖、雷達(dá)圖;而且圖表數(shù)據(jù)可以在左側(cè)表格中動(dòng)態(tài)維護(hù),包括增加修改和刪除,維護(hù)表格信息后對應(yīng)圖表也會動(dòng)態(tài)更新

    2024年02月10日
    瀏覽(21)
  • 【Axure高保真原型】樹控制內(nèi)聯(lián)框架

    【Axure高保真原型】樹控制內(nèi)聯(lián)框架

    今天和大家分享樹控制內(nèi)聯(lián)框架的原型模板,點(diǎn)擊樹的箭頭可以打開或者收起子節(jié)點(diǎn),點(diǎn)擊最后一級人物節(jié)點(diǎn),可以切換右側(cè)內(nèi)聯(lián)框到對應(yīng)的頁面,左側(cè)的樹是通過中繼器制作的,使用簡單,只需要按要求填寫中繼器表格即可,案例中最高6級樹,具體效果可以觀看下方視頻或

    2024年02月01日
    瀏覽(32)
  • 【計(jì)算機(jī)視覺|生成對抗】用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練(BigGAN)

    【計(jì)算機(jī)視覺|生成對抗】用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練(BigGAN)

    本系列博文為深度學(xué)習(xí)/計(jì)算機(jī)視覺論文筆記,轉(zhuǎn)載請注明出處 標(biāo)題: Large Scale GAN Training for High Fidelity Natural Image Synthesis 鏈接:[1809.11096] Large Scale GAN Training for High Fidelity Natural Image Synthesis (arxiv.org) 盡管在生成圖像建模方面取得了近期的進(jìn)展,但成功地從諸如ImageNet之類的復(fù)

    2024年02月11日
    瀏覽(26)
  • 【Axure高保真原型】卡片_拖動(dòng)擺放換位效果

    【Axure高保真原型】卡片_拖動(dòng)擺放換位效果

    今天和大家分享卡片_拖動(dòng)擺放換位效果的原型模板,可以通過鼠標(biāo)拖動(dòng)任意卡片,對應(yīng)卡片可以跟隨鼠標(biāo)移動(dòng),其他卡片會自動(dòng)讓出位置,松開鼠標(biāo)后全部卡片自動(dòng)對齊擺放。那這個(gè)原型模板是用中繼器制作的,所以使用也很簡單,只需要維護(hù)中繼器表格的內(nèi)容即可,具體效

    2024年01月24日
    瀏覽(32)
  • 【計(jì)算機(jī)視覺|生成對抗】用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練(BigGAN)用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練(BigGAN)

    【計(jì)算機(jī)視覺|生成對抗】用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練(BigGAN)用于高保真自然圖像合成的大規(guī)模GAN訓(xùn)練(BigGAN)

    本系列博文為深度學(xué)習(xí)/計(jì)算機(jī)視覺論文筆記,轉(zhuǎn)載請注明出處 標(biāo)題: Large Scale GAN Training for High Fidelity Natural Image Synthesis 鏈接:[1809.11096] Large Scale GAN Training for High Fidelity Natural Image Synthesis (arxiv.org) 盡管在生成圖像建模方面取得了近期的進(jìn)展,但成功地從諸如ImageNet之類的復(fù)

    2024年02月11日
    瀏覽(26)
  • 【Axure高保真原型】中繼器網(wǎng)格圖片拖動(dòng)擺放

    【Axure高保真原型】中繼器網(wǎng)格圖片拖動(dòng)擺放

    今天和大家分享中繼器網(wǎng)格圖片拖動(dòng)擺放的原型模板,我們可以通過鼠標(biāo)拖動(dòng)來移動(dòng)圖片,拖動(dòng)過程其他圖標(biāo)會根據(jù)圖片拖動(dòng)自動(dòng)排列,松開鼠標(biāo)是圖片停放在指定位置,其他圖標(biāo)自動(dòng)排列。那這個(gè)模板是用中繼器制作的,所以使用也很方便,我們只需維護(hù)中繼器表格的信息

    2024年02月10日
    瀏覽(24)
  • 【Axure高保真原型】移入放大對應(yīng)區(qū)域的餅圖

    【Axure高保真原型】移入放大對應(yīng)區(qū)域的餅圖

    今天和大家分享移入放大對應(yīng)扇形區(qū)域的餅圖的原型模板,鼠標(biāo)移入時(shí),對應(yīng)扇形區(qū)域的會放大,并且的項(xiàng)目和數(shù)據(jù)彈窗,彈窗可以跟隨鼠標(biāo)移動(dòng)。這個(gè)原型是用Axure原生元件制作的,所以不需要聯(lián)網(wǎng)或者調(diào)用外部圖表……具體效果可以打開下方原型地址體驗(yàn)或者點(diǎn)擊下方視

    2024年01月18日
    瀏覽(34)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包