??CSDN小墨&曉末:https://blog.csdn.net/jd1813346972
???個人介紹: 研一|統(tǒng)計學|干貨分享
???????? 擅長Python、Matlab、R等主流編程軟件
???????? 累計十余項國家級比賽獎項,參與研究經(jīng)費10w、40w級橫向
該篇文章將以實戰(zhàn)形式演示利用Python結(jié)合Opencv實現(xiàn)車牌識別,全程涉及圖像預處理、車牌定位、車牌分割、通過模板匹配識別結(jié)果輸出。該項目對于智能交通、車輛管理等領(lǐng)域具有實際應(yīng)用價值。通過自動識別車牌號碼,可以實現(xiàn)車輛追蹤、違章查詢、停車場管理等功能,提高交通管理的效率和準確性??捎糜谲嚺谱R別技術(shù)學習。
技術(shù)要點:
- OpenCV:用于圖像處理和計算機視覺任務(wù)。
- Python:作為編程語言,具有簡單易學、資源豐富等優(yōu)點。
- 圖像處理技術(shù):如灰度化、噪聲去除、邊緣檢測、形態(tài)學操作、透視變換等。
1 導入相關(guān)模塊
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
from PIL import ImageFont, ImageDraw, Image
2 相關(guān)功能函數(shù)定義
2.1 彩色圖片顯示函數(shù)(plt_show0)
def plt_show0(img):
b,g,r = cv2.split(img)
img = cv2.merge([r, g, b])
plt.imshow(img)
plt.show()
cv2與plt的圖像通道不同:cv2為[b,g,r];plt為[r, g, b]
2.2 灰度圖片顯示函數(shù)(plt_show)
def plt_show(img):
plt.imshow(img,cmap='gray')
plt.show()
2.3 圖像去噪函數(shù)(gray_guss)
def gray_guss(image):
image = cv2.GaussianBlur(image, (3, 3), 0)
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
return gray_image
此處演示使用高斯模糊去噪。
cv2.GaussianBlur參數(shù)說明:
-
src
:輸入圖像,可以是任意數(shù)量的通道,這些通道可以獨立處理,但深度應(yīng)為CV_8U
、CV_16U
、CV_16S
、CV_32F
或CV_64F
。 -
ksize
:高斯核的大小,必須是正奇數(shù),例如 (3, 3)、(5, 5) 等。如果ksize
的值為零,那么它會根據(jù)sigmaX
和sigmaY
的值來計算。 -
sigmaX
:X 方向上的高斯核標準偏差。 -
dst
:輸出圖像,大小和類型與src
相同。 -
sigmaY
:Y 方向上的高斯核標準偏差,如果sigmaY
是零,那么它會與sigmaX
的值相同。如果sigmaY
是負數(shù),那么它會從ksize.width
和ksize.height
計算得出。 -
borderType
:像素外插法,有默認值。
2 圖像預處理
2.1 圖片讀取
origin_image = cv2.imread('D:/image/car3.jpg')
??此處演示識別車牌原圖:
2.2 高斯去噪
origin_image = cv2.imread('D:/image/car3.jpg')
# 復制一張圖片,在復制圖上進行圖像操作,保留原圖
image = origin_image.copy()
gray_image = gray_guss(image)
2.3 邊緣檢測
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX
x方向上的邊緣檢測(增強邊緣信息)。
2.4 閾值化
# 圖像閾值化操作——獲得二值化圖
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 顯示灰度圖像
plt_show(image)
??運行結(jié)果:
3 車牌定位
3.1 區(qū)域選擇
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 顯示灰度圖像
plt_show(image)
從圖像中提取對表達和描繪區(qū)域形狀有意義的圖像分量。
??運行結(jié)果:
3.2 形態(tài)學操作
# 腐蝕(erode)和膨脹(dilate)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向進行閉操作(抑制暗細節(jié))
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的開操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值濾波(去噪)
image = cv2.medianBlur(image, 21)
# 顯示灰度圖像
plt_show(image)
使用膨脹和腐蝕操作來突出車牌區(qū)域。
?? 運行結(jié)果:
3.3 輪廓檢測
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for item in contours:
rect = cv2.boundingRect(item)
x = rect[0]
y = rect[1]
weight = rect[2]
height = rect[3]
# 根據(jù)輪廓的形狀特點,確定車牌的輪廓位置并截取圖像
if (weight > (height * 3)) and (weight < (height * 4.5)):
image = origin_image[y:y + height, x:x + weight]
plt_show(image)
4 車牌字符分割
4.1 高斯去噪
# 圖像去噪灰度處理
gray_image = gray_guss(image)
4.2 閾值化
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
??運行結(jié)果:
4.3 膨脹操作
#膨脹操作
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
image = cv2.dilate(image, kernel)
plt_show(image)
??運行結(jié)果:
4.4 車牌號排序
words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放輪廓的起始點和寬高
for word in words:
# 篩選字符的輪廓
if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
i = i+1
if word[2] < 15:
splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
else:
splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
word_images.append(splite_image)
print(i)
print(words)
??運行結(jié)果:
1
2
3
4
5
6
7
[[2, 0, 7, 70], [12, 6, 30, 55], [15, 7, 7, 9], [46, 6, 32, 55], [83, 30, 9, 9], [96, 7, 32, 55], [132, 8, 32, 55], [167, 8, 30, 54], [202, 62, 7, 6], [203, 7, 30, 55], [245, 7, 12, 54], [266, 0, 12, 70]]
4.5 分割效果
for i,j in enumerate(word_images):
plt.subplot(1,7,i+1)
plt.imshow(word_images[i],cmap='gray')
plt.show()
??運行結(jié)果:
5 模板匹配
5.1 準備模板
# 準備模板(template[0-9]為數(shù)字模板;)
template = ['0','1','2','3','4','5','6','7','8','9',
'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
'藏','川','鄂','甘','贛','貴','桂','黑','滬','吉','冀','津','晉','京','遼','魯','蒙','閩','寧',
'青','瓊','陜','蘇','皖','湘','新','渝','豫','粵','云','浙']
# 讀取一個文件夾下的所有圖片,輸入?yún)?shù)是文件名,返回模板文件地址列表
def read_directory(directory_name):
referImg_list = []
for filename in os.listdir(directory_name):
referImg_list.append(directory_name + "/" + filename)
return referImg_list
# 獲得中文模板列表(只匹配車牌的第一個字符)
def get_chinese_words_list():
chinese_words_list = []
for i in range(34,64):
#將模板存放在字典中
c_word = read_directory('D:/refer1/'+ template[i])
chinese_words_list.append(c_word)
return chinese_words_list
chinese_words_list = get_chinese_words_list()
# 獲得英文模板列表(只匹配車牌的第二個字符)
def get_eng_words_list():
eng_words_list = []
for i in range(10,34):
e_word = read_directory('D:/refer1/'+ template[i])
eng_words_list.append(e_word)
return eng_words_list
eng_words_list = get_eng_words_list()
# 獲得英文和數(shù)字模板列表(匹配車牌后面的字符)
def get_eng_num_words_list():
eng_num_words_list = []
for i in range(0,34):
word = read_directory('D:/refer1/'+ template[i])
eng_num_words_list.append(word)
return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()
此處需提前準備各類字符模板。
5.2 匹配結(jié)果
# 獲得英文和數(shù)字模板列表(匹配車牌后面的字符)
def get_eng_num_words_list():
eng_num_words_list = []
for i in range(0,34):
word = read_directory('D:/refer1/'+ template[i])
eng_num_words_list.append(word)
return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()
# 讀取一個模板地址與圖片進行匹配,返回得分
def template_score(template,image):
#將模板進行格式轉(zhuǎn)換
template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
#模板圖像閾值化處理——獲得黑白圖
ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
# height, width = template_img.shape
# image_ = image.copy()
# image_ = cv2.resize(image_, (width, height))
image_ = image.copy()
#獲得待檢測圖片的尺寸
height, width = image_.shape
# 將模板resize至與圖像一樣大小
template_img = cv2.resize(template_img, (width, height))
# 模板匹配,返回匹配得分
result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
return result[0][0]
# 對分割得到的字符逐一匹配
def template_matching(word_images):
results = []
for index,word_image in enumerate(word_images):
if index==0:
best_score = []
for chinese_words in chinese_words_list:
score = []
for chinese_word in chinese_words:
result = template_score(chinese_word,word_image)
score.append(result)
best_score.append(max(score))
i = best_score.index(max(best_score))
# print(template[34+i])
r = template[34+i]
results.append(r)
continue
if index==1:
best_score = []
for eng_word_list in eng_words_list:
score = []
for eng_word in eng_word_list:
result = template_score(eng_word,word_image)
score.append(result)
best_score.append(max(score))
i = best_score.index(max(best_score))
# print(template[10+i])
r = template[10+i]
results.append(r)
continue
else:
best_score = []
for eng_num_word_list in eng_num_words_list:
score = []
for eng_num_word in eng_num_word_list:
result = template_score(eng_num_word,word_image)
score.append(result)
best_score.append(max(score))
i = best_score.index(max(best_score))
# print(template[i])
r = template[i]
results.append(r)
continue
return results
word_images_ = word_images.copy()
# 調(diào)用函數(shù)獲得結(jié)果
result = template_matching(word_images_)
print(result)
print( "".join(result))
??運行結(jié)果:
['渝', 'B', 'F', 'U', '8', '7', '1']
渝BFU871
“”.join(result)函數(shù)將列表轉(zhuǎn)換為拼接好的字符串,方便結(jié)果顯示
5.3 匹配效果展示
height,weight = origin_image.shape[0:2]
print(height)
print(weight)
image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
#設(shè)置需要顯示的字體
fontpath = "font/simsun.ttc"
font = ImageFont.truetype(fontpath,64)
img_pil = Image.fromarray(image_1)
draw = ImageDraw.Draw(img_pil)
#繪制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)), "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
print( "".join(result))
plt_show0(bk_img)
??運行結(jié)果:文章來源:http://www.zghlxwxcb.cn/news/detail-838648.html
文章來源地址http://www.zghlxwxcb.cn/news/detail-838648.html
6完整代碼
# 導入所需模塊
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
from PIL import ImageFont, ImageDraw, Image
# plt顯示彩色圖片
def plt_show0(img):
b,g,r = cv2.split(img)
img = cv2.merge([r, g, b])
plt.imshow(img)
plt.show()
# plt顯示灰度圖片
def plt_show(img):
plt.imshow(img,cmap='gray')
plt.show()
# 圖像去噪灰度處理
def gray_guss(image):
image = cv2.GaussianBlur(image, (3, 3), 0)
gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
return gray_image
# 讀取待檢測圖片
origin_image = cv2.imread('D:/image/car3.jpg')
# 復制一張圖片,在復制圖上進行圖像操作,保留原圖
image = origin_image.copy()
# 圖像去噪灰度處理
gray_image = gray_guss(image)
# x方向上的邊緣檢測(增強邊緣信息)
Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)
absX = cv2.convertScaleAbs(Sobel_x)
image = absX
# 圖像閾值化操作——獲得二值化圖
ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)
# 顯示灰度圖像
plt_show(image)
# 形態(tài)學(從圖像中提取對表達和描繪區(qū)域形狀有意義的圖像分量)——閉操作
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX,iterations = 1)
# 顯示灰度圖像
plt_show(image)
# 腐蝕(erode)和膨脹(dilate)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))
#x方向進行閉操作(抑制暗細節(jié))
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
#y方向的開操作
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 中值濾波(去噪)
image = cv2.medianBlur(image, 21)
# 顯示灰度圖像
plt_show(image)
# 獲得輪廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for item in contours:
rect = cv2.boundingRect(item)
x = rect[0]
y = rect[1]
weight = rect[2]
height = rect[3]
# 根據(jù)輪廓的形狀特點,確定車牌的輪廓位置并截取圖像
if (weight > (height * 3)) and (weight < (height * 4.5)):
image = origin_image[y:y + height, x:x + weight]
plt_show(image)
#車牌字符分割
# 圖像去噪灰度處理
gray_image = gray_guss(image)
# 圖像閾值化操作——獲得二值化圖
ret, image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
plt_show(image)
#膨脹操作
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (4, 4))
image = cv2.dilate(image, kernel)
plt_show(image)
# 查找輪廓
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
words = []
word_images = []
#對所有輪廓逐一操作
for item in contours:
word = []
rect = cv2.boundingRect(item)
x = rect[0]
y = rect[1]
weight = rect[2]
height = rect[3]
word.append(x)
word.append(y)
word.append(weight)
word.append(height)
words.append(word)
# 排序,車牌號有順序。words是一個嵌套列表
words = sorted(words,key=lambda s:s[0],reverse=False)
i = 0
#word中存放輪廓的起始點和寬高
for word in words:
# 篩選字符的輪廓
if (word[3] > (word[2] * 1.5)) and (word[3] < (word[2] * 5.5)) and (word[2] > 10):
i = i+1
if word[2] < 15:
splite_image = image[word[1]:word[1] + word[3], word[0]-word[2]:word[0] + word[2]*2]
else:
splite_image = image[word[1]:word[1] + word[3], word[0]:word[0] + word[2]]
word_images.append(splite_image)
print(i)
print(words)
for i,j in enumerate(word_images):
plt.subplot(1,7,i+1)
plt.imshow(word_images[i],cmap='gray')
plt.show()
#模版匹配
# 準備模板(template[0-9]為數(shù)字模板;)
template = ['0','1','2','3','4','5','6','7','8','9',
'A','B','C','D','E','F','G','H','J','K','L','M','N','P','Q','R','S','T','U','V','W','X','Y','Z',
'藏','川','鄂','甘','贛','貴','桂','黑','滬','吉','冀','津','晉','京','遼','魯','蒙','閩','寧',
'青','瓊','陜','蘇','皖','湘','新','渝','豫','粵','云','浙']
# 讀取一個文件夾下的所有圖片,輸入?yún)?shù)是文件名,返回模板文件地址列表
def read_directory(directory_name):
referImg_list = []
for filename in os.listdir(directory_name):
referImg_list.append(directory_name + "/" + filename)
return referImg_list
# 獲得中文模板列表(只匹配車牌的第一個字符)
def get_chinese_words_list():
chinese_words_list = []
for i in range(34,64):
#將模板存放在字典中
c_word = read_directory('D:/refer1/'+ template[i])
chinese_words_list.append(c_word)
return chinese_words_list
chinese_words_list = get_chinese_words_list()
# 獲得英文模板列表(只匹配車牌的第二個字符)
def get_eng_words_list():
eng_words_list = []
for i in range(10,34):
e_word = read_directory('D:/refer1/'+ template[i])
eng_words_list.append(e_word)
return eng_words_list
eng_words_list = get_eng_words_list()
# 獲得英文和數(shù)字模板列表(匹配車牌后面的字符)
def get_eng_num_words_list():
eng_num_words_list = []
for i in range(0,34):
word = read_directory('D:/refer1/'+ template[i])
eng_num_words_list.append(word)
return eng_num_words_list
eng_num_words_list = get_eng_num_words_list()
# 讀取一個模板地址與圖片進行匹配,返回得分
def template_score(template,image):
#將模板進行格式轉(zhuǎn)換
template_img=cv2.imdecode(np.fromfile(template,dtype=np.uint8),1)
template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
#模板圖像閾值化處理——獲得黑白圖
ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
# height, width = template_img.shape
# image_ = image.copy()
# image_ = cv2.resize(image_, (width, height))
image_ = image.copy()
#獲得待檢測圖片的尺寸
height, width = image_.shape
# 將模板resize至與圖像一樣大小
template_img = cv2.resize(template_img, (width, height))
# 模板匹配,返回匹配得分
result = cv2.matchTemplate(image_, template_img, cv2.TM_CCOEFF)
return result[0][0]
# 對分割得到的字符逐一匹配
def template_matching(word_images):
results = []
for index,word_image in enumerate(word_images):
if index==0:
best_score = []
for chinese_words in chinese_words_list:
score = []
for chinese_word in chinese_words:
result = template_score(chinese_word,word_image)
score.append(result)
best_score.append(max(score))
i = best_score.index(max(best_score))
# print(template[34+i])
r = template[34+i]
results.append(r)
continue
if index==1:
best_score = []
for eng_word_list in eng_words_list:
score = []
for eng_word in eng_word_list:
result = template_score(eng_word,word_image)
score.append(result)
best_score.append(max(score))
i = best_score.index(max(best_score))
# print(template[10+i])
r = template[10+i]
results.append(r)
continue
else:
best_score = []
for eng_num_word_list in eng_num_words_list:
score = []
for eng_num_word in eng_num_word_list:
result = template_score(eng_num_word,word_image)
score.append(result)
best_score.append(max(score))
i = best_score.index(max(best_score))
# print(template[i])
r = template[i]
results.append(r)
continue
return results
word_images_ = word_images.copy()
# 調(diào)用函數(shù)獲得結(jié)果
result = template_matching(word_images_)
print(result)
# "".join(result)函數(shù)將列表轉(zhuǎn)換為拼接好的字符串,方便結(jié)果顯示
print( "".join(result))
height,weight = origin_image.shape[0:2]
print(height)
print(weight)
image_1 = origin_image.copy()
cv2.rectangle(image_1, (int(0.2*weight), int(0.75*height)), (int(weight*0.9), int(height*0.95)), (0, 255, 0), 5)
#設(shè)置需要顯示的字體
fontpath = "font/simsun.ttc"
font = ImageFont.truetype(fontpath,64)
img_pil = Image.fromarray(image_1)
draw = ImageDraw.Draw(img_pil)
#繪制文字信息
draw.text((int(0.2*weight)+25, int(0.75*height)), "".join(result), font = font, fill = (255, 255, 0))
bk_img = np.array(img_pil)
print(result)
print( "".join(result))
plt_show0(bk_img)
到了這里,關(guān)于【Python實戰(zhàn)】——Python+Opencv是實現(xiàn)車牌自動識別的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!