国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

車牌識(shí)別系統(tǒng) opencv

這篇具有很好參考價(jià)值的文章主要介紹了車牌識(shí)別系統(tǒng) opencv。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問。

????????兩個(gè)關(guān)鍵子系統(tǒng): 車牌定位 和?字符識(shí)別

一,主要步驟

  • 原始車輛圖像采集
  • 汽車牌照區(qū)域定位
  • 汽車牌照內(nèi)字符的分割
  • 汽車牌照內(nèi)字符的識(shí)別

車牌定位方法:

  • 基于邊緣檢測(cè)的車牌定位方法
  • 基于遺傳算法的車牌定位方法
  • 基于紋理特征的車牌定位方法
  • 基于數(shù)學(xué)形態(tài)學(xué)的車牌定位方法
  • 基于小波分析和變換的車牌定位方法
  • 基于神經(jīng)網(wǎng)絡(luò)的車牌定位方法

車牌定位技術(shù):

  • 車牌圖像的濾波
  • 車牌圖像的二值化
  • 車牌圖像的邊緣檢測(cè)
  • 車牌圖像的灰度映射
  • 車牌圖像的改進(jìn)型投影法定位
    • 水平投影?:一階差分運(yùn)算于汽車牌照?qǐng)D像,在水平方向上進(jìn)行。 累加位于水平差分圖像中的像素,累加沿水平方向進(jìn)行。 水平投影表得以產(chǎn)生,利用該表并集合如前所述的汽車牌照在水平投影后在投影值上表現(xiàn)出來的特征確定汽車牌照的大概位置。??????
    • 垂直投影:方法與水平投影類似,做垂直方向的差分運(yùn)算,進(jìn)行平滑,得到左右邊界。
    • 傳統(tǒng)車牌投影順序 :水平投影、水平搜索、水平提取、垂直投影、垂直搜索、垂直提取。

車牌圖像預(yù)處理:

  • 車牌圖像的灰度化
  • 車牌圖像的直方圖均衡化

車牌字符分割技術(shù):

  • 車牌傾斜度檢測(cè)方法
  • 車牌傾斜的矯正方法
  • 車牌邊框和鉚釘?shù)娜コ?/strong>
  • 基于垂直投影和先驗(yàn)知識(shí)的車牌字符分割
    • 計(jì)算垂直投影
    • 初步垂直切分
  • 粘連車牌字符的分???????
  • 割斷裂車牌字符的合并
  • 對(duì)車牌字符的切分結(jié)果進(jìn)行確認(rèn)

車牌字符識(shí)別技術(shù):

  • 模式識(shí)別

? ? ? ? ? ?模式就是一種對(duì)某種對(duì)象(一些敏感的客體)結(jié)構(gòu)或者定量的描述,是一種集合(由具有某些共同特定性質(zhì)的模式構(gòu)成)。目前模式識(shí)別主要有4種方法:基于神經(jīng)網(wǎng)絡(luò)的識(shí)別方法、基于句法模式的識(shí)別方法、基于統(tǒng)計(jì)模式的識(shí)別方法和基于模糊模式的識(shí)別方法。

  • 字符識(shí)別
    • 基于神經(jīng)網(wǎng)絡(luò)的識(shí)別方法
    • 基于特征分析的匹配方法
    • 基于模版的匹配方法
  • 英文、數(shù)字識(shí)別

????????目前,小波識(shí)別法、模板匹配法與神經(jīng)網(wǎng)絡(luò)法等常被作為汽車牌照字符識(shí)別的主要方法

  • 漢字識(shí)別

二,車牌定位

# -*- coding: utf-8 -*-
 
import cv2
import numpy as np


def stretch(img):
    '''
    圖像拉伸函數(shù)
    '''
    maxi=float(img.max())
    mini=float(img.min())
    
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            img[i,j]=(255/(maxi-mini)*img[i,j]-(255*mini)/(maxi-mini))
    
    return img

def dobinaryzation(img):
    '''
    二值化處理函數(shù)
    '''
    maxi=float(img.max())
    mini=float(img.min())
    
    x=maxi-((maxi-mini)/2)
    #二值化,返回閾值ret  和  二值化操作后的圖像thresh
    ret,thresh=cv2.threshold(img,x,255,cv2.THRESH_BINARY)
    #返回二值化后的黑白圖像
    return thresh

def find_rectangle(contour):
    '''
    尋找矩形輪廓
    '''
    y,x=[],[]
    
    for p in contour:
        y.append(p[0][0])
        x.append(p[0][1])
    
    return [min(y),min(x),max(y),max(x)]

def locate_license(img,afterimg):
    '''
    定位車牌號(hào)
    '''
    contours,hierarchy=cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    
    #找出最大的三個(gè)區(qū)域
    block=[]
    for c in contours:
        #找出輪廓的左上點(diǎn)和右下點(diǎn),由此計(jì)算它的面積和長(zhǎng)度比
        r=find_rectangle(c)
        a=(r[2]-r[0])*(r[3]-r[1])   #面積
        s=(r[2]-r[0])*(r[3]-r[1])   #長(zhǎng)度比
        
        block.append([r,a,s])
    #選出面積最大的3個(gè)區(qū)域
    block=sorted(block,key=lambda b: b[1])[-3:]
    
    #使用顏色識(shí)別判斷找出最像車牌的區(qū)域
    maxweight,maxindex=0,-1
    for i in range(len(block)):
        b=afterimg[block[i][0][1]:block[i][0][3],block[i][0][0]:block[i][0][2]]
        #BGR轉(zhuǎn)HSV
        hsv=cv2.cvtColor(b,cv2.COLOR_BGR2HSV)
        #藍(lán)色車牌的范圍
        lower=np.array([100,50,50])
        upper=np.array([140,255,255])
        #根據(jù)閾值構(gòu)建掩膜
        mask=cv2.inRange(hsv,lower,upper)
        #統(tǒng)計(jì)權(quán)值
        w1=0
        for m in mask:
            w1+=m/255
        
        w2=0
        for n in w1:
            w2+=n
            
        #選出最大權(quán)值的區(qū)域
        if w2>maxweight:
            maxindex=i
            maxweight=w2
            
    return block[maxindex][0]

def find_license(img):
    '''
    預(yù)處理函數(shù)
    '''
    m=400*img.shape[0]/img.shape[1]
    
    #壓縮圖像
    img=cv2.resize(img,(400,int(m)),interpolation=cv2.INTER_CUBIC)
    
    #BGR轉(zhuǎn)換為灰度圖像
    gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    
    #灰度拉伸
    stretchedimg=stretch(gray_img)
    
    '''進(jìn)行開運(yùn)算,用來去除噪聲'''
    r=16
    h=w=r*2+1
    kernel=np.zeros((h,w),np.uint8)
    cv2.circle(kernel,(r,r),r,1,-1)
    #開運(yùn)算
    openingimg=cv2.morphologyEx(stretchedimg,cv2.MORPH_OPEN,kernel)
    #獲取差分圖,兩幅圖像做差  cv2.absdiff('圖像1','圖像2')
    strtimg=cv2.absdiff(stretchedimg,openingimg)
    
    #圖像二值化
    binaryimg=dobinaryzation(strtimg)
    
    #canny邊緣檢測(cè)
    canny=cv2.Canny(binaryimg,binaryimg.shape[0],binaryimg.shape[1])
    
    '''消除小的區(qū)域,保留大塊的區(qū)域,從而定位車牌'''
    #進(jìn)行閉運(yùn)算
    kernel=np.ones((5,19),np.uint8)
    closingimg=cv2.morphologyEx(canny,cv2.MORPH_CLOSE,kernel)
    
    #進(jìn)行開運(yùn)算
    openingimg=cv2.morphologyEx(closingimg,cv2.MORPH_OPEN,kernel)
    
    #再次進(jìn)行開運(yùn)算
    kernel=np.ones((11,5),np.uint8)
    openingimg=cv2.morphologyEx(openingimg,cv2.MORPH_OPEN,kernel)
    
    #消除小區(qū)域,定位車牌位置
    rect=locate_license(openingimg,img)
    
    return rect,img

def cut_license(afterimg,rect):
    '''
    圖像分割函數(shù)
    '''
    #轉(zhuǎn)換為寬度和高度
    rect[2]=rect[2]-rect[0]
    rect[3]=rect[3]-rect[1]
    rect_copy=tuple(rect.copy())
    rect=[0,0,0,0]
    #創(chuàng)建掩膜
    mask=np.zeros(afterimg.shape[:2],np.uint8)
    #創(chuàng)建背景模型  大小只能為13*5,行數(shù)只能為1,單通道浮點(diǎn)型
    bgdModel=np.zeros((1,65),np.float64)
    #創(chuàng)建前景模型
    fgdModel=np.zeros((1,65),np.float64)
    #分割圖像
    cv2.grabCut(afterimg,mask,rect_copy,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
    mask2=np.where((mask==2)|(mask==0),0,1).astype('uint8')
    img_show=afterimg*mask2[:,:,np.newaxis]
    
    return img_show

def deal_license(licenseimg):
    '''
    車牌圖片二值化
    '''
    #車牌變?yōu)榛叶葓D像
    gray_img=cv2.cvtColor(licenseimg,cv2.COLOR_BGR2GRAY)
    
    #均值濾波  去除噪聲
    kernel=np.ones((3,3),np.float32)/9
    gray_img=cv2.filter2D(gray_img,-1,kernel)
    
    #二值化處理
    ret,thresh=cv2.threshold(gray_img,120,255,cv2.THRESH_BINARY)
    
    return thresh


def find_end(start,arg,black,white,width,black_max,white_max):
    end=start+1
    for m in range(start+1,width-1):
        if (black[m] if arg else white[m])>(0.98*black_max if arg else 0.98*white_max):
            end=m
            break
    return end
                

if __name__=='__main__':
    img=cv2.imread('car.jpg',cv2.IMREAD_COLOR)
    #預(yù)處理圖像
    rect,afterimg=find_license(img)
    
    #框出車牌號(hào)
    cv2.rectangle(afterimg,(rect[0],rect[1]),(rect[2],rect[3]),(0,255,0),2)
    cv2.imshow('afterimg',afterimg)
    
    #分割車牌與背景
    cutimg=cut_license(afterimg,rect)
    cv2.imshow('cutimg',cutimg)
    
    #二值化生成黑白圖
    thresh=deal_license(cutimg)
    cv2.imshow('thresh',thresh)
    cv2.imwrite("cp.jpg",thresh)
    cv2.waitKey(0)
    
    #分割字符
    '''
    判斷底色和字色
    '''
    #記錄黑白像素總和
    white=[]
    black=[]
    height=thresh.shape[0]  #263
    width=thresh.shape[1]   #400
    #print('height',height)
    #print('width',width)
    white_max=0
    black_max=0
    #計(jì)算每一列的黑白像素總和
    for i in range(width):
        line_white=0
        line_black=0
        for j in range(height):
            if thresh[j][i]==255:
                line_white+=1
            if thresh[j][i]==0:
                line_black+=1
        white_max=max(white_max,line_white)
        black_max=max(black_max,line_black)
        white.append(line_white)
        black.append(line_black)
        print('white',white)
        print('black',black)
    #arg為true表示黑底白字,F(xiàn)alse為白底黑字
    arg=True
    if black_max<white_max:
        arg=False
    
    n=1
    start=1
    end=2
    while n<width-2:
        n+=1
        #判斷是白底黑字還是黑底白字  0.05參數(shù)對(duì)應(yīng)上面的0.95 可作調(diào)整
        if(white[n] if arg else black[n])>(0.02*white_max if arg else 0.02*black_max):
            start=n
            end=find_end(start,arg,black,white,width,black_max,white_max)
            n=end
            if end-start>5:
                cj=thresh[1:height,start:end]
                cv2.imshow('cutlicense',cj)
                cv2.waitKey(0)
    
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()

三,字符識(shí)別

? ? ? ? 1, 安裝包?pytesseract?pillow

????????pytesseract 可用于驗(yàn)證碼識(shí)別?【精選】Python OCR工具pytesseract詳解_測(cè)試開發(fā)小記的博客-CSDN博客

? ? ? ? pillow?百度安全驗(yàn)證

'''
是基于Python的OCR工具, 底層使用的是Google的Tesseract-OCR 引擎,支持識(shí)別圖片中的文字,
支持jpeg, png, gif, bmp, tiff等圖片格式。本文介紹如何使用pytesseract 實(shí)現(xiàn)圖片文字識(shí)別。
'''
pip install pytesseract?

'''?PIL?軟件包提供了基本的圖像處理功能,如:改變圖像大小,旋轉(zhuǎn)圖像,圖像格式轉(zhuǎn)換,
場(chǎng)空間轉(zhuǎn)換,圖像增強(qiáng),直方圖處理,插值和濾波等等。
'''
pip install pillow?

? ? ? ?2,安裝pytesseract?

????????選擇合適的版本,安裝包地址:

????????Home · UB-Mannheim/tesseract Wiki · GitHub

?????????3, 修改 pytesseract?包源文件?

? ? ? ? 修改為指向剛才的安裝地址

opencv批量處理車牌識(shí)別,opencv,人工智能,計(jì)算機(jī)視覺

四,車牌識(shí)別系統(tǒng)

? ? ? 主界面

import tkinter as tk
from tkinter.filedialog import *
from tkinter import ttk
import tkinter.messagebox as mBox

import predict
import cv2
from PIL import Image, ImageTk
import threading
import time



class Surface(ttk.Frame):
	pic_path = ""
	viewhigh = 600
	viewwide = 600
	update_time = 0
	thread = None
	thread_run = False
	camera = None
	color_transform = {"green":("綠牌","#55FF55"), "yello":("黃牌","#FFFF00"), "blue":("藍(lán)牌","#6666FF")}
		
	def __init__(self, win):
		ttk.Frame.__init__(self, win)
		frame_left = ttk.Frame(self)
		frame_right1 = ttk.Frame(self)
		frame_right2 = ttk.Frame(self)
		win.title("車牌識(shí)別")
		win.state("zoomed")
		self.pack(fill=tk.BOTH, expand=tk.YES, padx="5", pady="5")
		frame_left.pack(side=tk.LEFT,expand=1,fill=tk.BOTH)
		frame_right1.pack(side=tk.TOP,expand=1,fill=tk.Y)
		frame_right2.pack(side=tk.RIGHT,expand=0)
		ttk.Label(frame_left, text='原圖:').pack(anchor="nw") 
		ttk.Label(frame_right1, text='車牌位置:').grid(column=0, row=0, sticky=tk.W)
		
		from_pic_ctl = ttk.Button(frame_right2, text="來自圖片", width=20, command=self.from_pic)
		from_vedio_ctl = ttk.Button(frame_right2, text="來自攝像頭", width=20, command=self.from_vedio)
		self.image_ctl = ttk.Label(frame_left)
		self.image_ctl.pack(anchor="nw")
		
		self.roi_ctl = ttk.Label(frame_right1)
		self.roi_ctl.grid(column=0, row=1, sticky=tk.W)
		ttk.Label(frame_right1, text='識(shí)別結(jié)果:').grid(column=0, row=2, sticky=tk.W)
		self.r_ctl = ttk.Label(frame_right1, text="")
		self.r_ctl.grid(column=0, row=3, sticky=tk.W)
		self.color_ctl = ttk.Label(frame_right1, text="", width="20")
		self.color_ctl.grid(column=0, row=4, sticky=tk.W)
		from_vedio_ctl.pack(anchor="se", pady="5")
		from_pic_ctl.pack(anchor="se", pady="5")
		self.predictor = predict.CardPredictor()
		self.predictor.train_svm()
		
	def get_imgtk(self, img_bgr):
		img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
		im = Image.fromarray(img)
		imgtk = ImageTk.PhotoImage(image=im)
		wide = imgtk.width()
		high = imgtk.height()
		if wide > self.viewwide or high > self.viewhigh:
			wide_factor = self.viewwide / wide
			high_factor = self.viewhigh / high
			factor = min(wide_factor, high_factor)
			
			wide = int(wide * factor)
			if wide <= 0 : wide = 1
			high = int(high * factor)
			if high <= 0 : high = 1
			im=im.resize((wide, high), Image.LANCZOS) #在pillow的10.0.0版本中,ANTIALIAS方法被刪除了,使用新的方法即可:
			imgtk = ImageTk.PhotoImage(image=im)
		return imgtk
	
	def show_roi(self, r, roi, color):
		if r :
			roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
			roi = Image.fromarray(roi)
			self.imgtk_roi = ImageTk.PhotoImage(image=roi)
			self.roi_ctl.configure(image=self.imgtk_roi, state='enable')
			self.r_ctl.configure(text=str(r))
			self.update_time = time.time()
			try:
				c = self.color_transform[color]
				self.color_ctl.configure(text=c[0], background=c[1], state='enable')
			except: 
				self.color_ctl.configure(state='disabled')
		elif self.update_time + 8 < time.time():
			self.roi_ctl.configure(state='disabled')
			self.r_ctl.configure(text="")
			self.color_ctl.configure(state='disabled')
		
	def from_vedio(self):
		if self.thread_run:
			return
		if self.camera is None:
			self.camera = cv2.VideoCapture(0)
			if not self.camera.isOpened():
				mBox.showwarning('警告', '攝像頭打開失??!')
				self.camera = None
				return
		self.thread = threading.Thread(target=self.vedio_thread, args=(self,))
		self.thread.setDaemon(True)
		self.thread.start()
		self.thread_run = True
		
	def from_pic(self):
		self.thread_run = False
		self.pic_path = askopenfilename(title="選擇識(shí)別圖片", filetypes=[("jpg圖片", "*.jpg")])
		if self.pic_path:
			img_bgr = predict.imreadex(self.pic_path)
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
			for resize_rate in resize_rates:
				print("resize_rate:", resize_rate)
				try:
					r, roi, color = self.predictor.predict(img_bgr, resize_rate)
				except:
					continue
				if r:
					break
			#r, roi, color = self.predictor.predict(img_bgr, 1)
			self.show_roi(r, roi, color)

	@staticmethod
	def vedio_thread(self):
		self.thread_run = True
		predict_time = time.time()
		while self.thread_run:
			_, img_bgr = self.camera.read()
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			if time.time() - predict_time > 2:
				r, roi, color = self.predictor.predict(img_bgr)
				self.show_roi(r, roi, color)
				predict_time = time.time()
		print("run end")
		
		
def close_window():
	print("destroy")
	if surface.thread_run :
		surface.thread_run = False
		surface.thread.join(2.0)
	win.destroy()
	
	
if __name__ == '__main__':
	win=tk.Tk()
	
	surface = Surface(win)
	win.protocol('WM_DELETE_WINDOW', close_window)
	win.mainloop()
	

? ? ? ?預(yù)測(cè)文件?predict.py文章來源地址http://www.zghlxwxcb.cn/news/detail-831743.html

import cv2
import numpy as np
from numpy.linalg import norm
import sys
import os
import json

SZ = 20          #訓(xùn)練圖片長(zhǎng)寬
MAX_WIDTH = 1000 #原始圖片最大寬度
Min_Area = 2000  #車牌區(qū)域允許最大面積
PROVINCE_START = 1000
#讀取圖片文件
def imreadex(filename):
	return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)
	
def point_limit(point):
	if point[0] < 0:
		point[0] = 0
	if point[1] < 0:
		point[1] = 0

#根據(jù)設(shè)定的閾值和圖片直方圖,找出波峰,用于分隔字符
def find_waves(threshold, histogram):
	up_point = -1#上升點(diǎn)
	is_peak = False
	if histogram[0] > threshold:
		up_point = 0
		is_peak = True
	wave_peaks = []
	for i,x in enumerate(histogram):
		if is_peak and x < threshold:
			if i - up_point > 2:
				is_peak = False
				wave_peaks.append((up_point, i))
		elif not is_peak and x >= threshold:
			is_peak = True
			up_point = i
	if is_peak and up_point != -1 and i - up_point > 4:
		wave_peaks.append((up_point, i))
	return wave_peaks

#根據(jù)找出的波峰,分隔圖片,從而得到逐個(gè)字符圖片
def seperate_card(img, waves):
	part_cards = []
	for wave in waves:
		part_cards.append(img[:, wave[0]:wave[1]])
	return part_cards

#來自opencv的sample,用于svm訓(xùn)練
def deskew(img):
	m = cv2.moments(img)
	if abs(m['mu02']) < 1e-2:
		return img.copy()
	skew = m['mu11']/m['mu02']
	M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
	img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
	return img
#來自opencv的sample,用于svm訓(xùn)練
def preprocess_hog(digits):
	samples = []
	for img in digits:
		gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
		gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
		mag, ang = cv2.cartToPolar(gx, gy)
		bin_n = 16
		bin = np.int32(bin_n*ang/(2*np.pi))
		bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
		mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
		hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
		hist = np.hstack(hists)
		
		# transform to Hellinger kernel
		eps = 1e-7
		hist /= hist.sum() + eps
		hist = np.sqrt(hist)
		hist /= norm(hist) + eps
		
		samples.append(hist)
	return np.float32(samples)
#不能保證包括所有省份
provinces = [
"zh_cuan", "川",
"zh_e", "鄂",
"zh_gan", "贛",
"zh_gan1", "甘",
"zh_gui", "貴",
"zh_gui1", "桂",
"zh_hei", "黑",
"zh_hu", "滬",
"zh_ji", "冀",
"zh_jin", "津",
"zh_jing", "京",
"zh_jl", "吉",
"zh_liao", "遼",
"zh_lu", "魯",
"zh_meng", "蒙",
"zh_min", "閩",
"zh_ning", "寧",
"zh_qing", "靑",
"zh_qiong", "瓊",
"zh_shan", "陜",
"zh_su", "蘇",
"zh_sx", "晉",
"zh_wan", "皖",
"zh_xiang", "湘",
"zh_xin", "新",
"zh_yu", "豫",
"zh_yu1", "渝",
"zh_yue", "粵",
"zh_yun", "云",
"zh_zang", "藏",
"zh_zhe", "浙"
]
class StatModel(object):
	def load(self, fn):
		self.model = self.model.load(fn)  
	def save(self, fn):
		self.model.save(fn)
class SVM(StatModel):
	def __init__(self, C = 1, gamma = 0.5):
		self.model = cv2.ml.SVM_create()
		self.model.setGamma(gamma)
		self.model.setC(C)
		self.model.setKernel(cv2.ml.SVM_RBF)
		self.model.setType(cv2.ml.SVM_C_SVC)
#訓(xùn)練svm
	def train(self, samples, responses):
		self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
#字符識(shí)別
	def predict(self, samples):
		r = self.model.predict(samples)
		return r[1].ravel()

class CardPredictor:
	def __init__(self):
		#車牌識(shí)別的部分參數(shù)保存在js中,便于根據(jù)圖片分辨率做調(diào)整
		f = open('config.js')
		j = json.load(f)
		for c in j["config"]:
			if c["open"]:
				self.cfg = c.copy()
				break
		else:
			raise RuntimeError('沒有設(shè)置有效配置參數(shù)')

	def __del__(self):
		self.save_traindata()
	def train_svm(self):
		#識(shí)別英文字母和數(shù)字
		self.model = SVM(C=1, gamma=0.5)
		#識(shí)別中文
		self.modelchinese = SVM(C=1, gamma=0.5)
		if os.path.exists("svm.dat"):
			self.model.load("svm.dat")
		else:
			chars_train = []
			chars_label = []
			
			for root, dirs, files in os.walk("train\\chars2"):
				if len(os.path.basename(root)) > 1:
					continue
				root_int = ord(os.path.basename(root))
				for filename in files:
					filepath = os.path.join(root,filename)
					digit_img = cv2.imread(filepath)
					digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
					chars_train.append(digit_img)
					#chars_label.append(1)
					chars_label.append(root_int)
			
			chars_train = list(map(deskew, chars_train))
			chars_train = preprocess_hog(chars_train)
			#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
			chars_label = np.array(chars_label)
			self.model.train(chars_train, chars_label)
		if os.path.exists("svmchinese.dat"):
			self.modelchinese.load("svmchinese.dat")
		else:
			chars_train = []
			chars_label = []
			for root, dirs, files in os.walk("train\\charsChinese"):
				if not os.path.basename(root).startswith("zh_"):
					continue
				pinyin = os.path.basename(root)
				index = provinces.index(pinyin) + PROVINCE_START + 1 #1是拼音對(duì)應(yīng)的漢字
				for filename in files:
					filepath = os.path.join(root,filename)
					digit_img = cv2.imread(filepath)
					digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
					chars_train.append(digit_img)
					#chars_label.append(1)
					chars_label.append(index)
			chars_train = list(map(deskew, chars_train))
			chars_train = preprocess_hog(chars_train)
			#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
			chars_label = np.array(chars_label)
			print(chars_train.shape)
			self.modelchinese.train(chars_train, chars_label)

	def save_traindata(self):
		if not os.path.exists("svm.dat"):
			self.model.save("svm.dat")
		if not os.path.exists("svmchinese.dat"):
			self.modelchinese.save("svmchinese.dat")

	def accurate_place(self, card_img_hsv, limit1, limit2, color):
		row_num, col_num = card_img_hsv.shape[:2]
		xl = col_num
		xr = 0
		yh = 0
		yl = row_num
		#col_num_limit = self.cfg["col_num_limit"]
		row_num_limit = self.cfg["row_num_limit"]
		col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5#綠色有漸變
		for i in range(row_num):
			count = 0
			for j in range(col_num):
				H = card_img_hsv.item(i, j, 0)
				S = card_img_hsv.item(i, j, 1)
				V = card_img_hsv.item(i, j, 2)
				if limit1 < H <= limit2 and 34 < S and 46 < V:
					count += 1
			if count > col_num_limit:
				if yl > i:
					yl = i
				if yh < i:
					yh = i
		for j in range(col_num):
			count = 0
			for i in range(row_num):
				H = card_img_hsv.item(i, j, 0)
				S = card_img_hsv.item(i, j, 1)
				V = card_img_hsv.item(i, j, 2)
				if limit1 < H <= limit2 and 34 < S and 46 < V:
					count += 1
			if count > row_num - row_num_limit:
				if xl > j:
					xl = j
				if xr < j:
					xr = j
		return xl, xr, yh, yl
		
	def predict(self, car_pic, resize_rate=1):
		if type(car_pic) == type(""):
			img = imreadex(car_pic)
		else:
			img = car_pic
		pic_hight, pic_width = img.shape[:2]
		if pic_width > MAX_WIDTH:
			pic_rate = MAX_WIDTH / pic_width
			img = cv2.resize(img, (MAX_WIDTH, int(pic_hight*pic_rate)), interpolation=cv2.INTER_LANCZOS4)
			pic_hight, pic_width = img.shape[:2]
		
		if resize_rate != 1:
			img = cv2.resize(img, (int(pic_width*resize_rate), int(pic_hight*resize_rate)), interpolation=cv2.INTER_LANCZOS4)
			pic_hight, pic_width = img.shape[:2]
			
		print("h,w:", pic_hight, pic_width)
		blur = self.cfg["blur"]
		#高斯去噪
		if blur > 0:
			img = cv2.GaussianBlur(img, (blur, blur), 0)#圖片分辨率調(diào)整
		oldimg = img
		img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
		#equ = cv2.equalizeHist(img)
		#img = np.hstack((img, equ))
		#去掉圖像中不會(huì)是車牌的區(qū)域
		kernel = np.ones((20, 20), np.uint8)
		img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
		img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);

		#找到圖像邊緣
		ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
		img_edge = cv2.Canny(img_thresh, 100, 200)
		#使用開運(yùn)算和閉運(yùn)算讓圖像邊緣成為一個(gè)整體
		kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
		img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)
		img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)

		#查找圖像邊緣整體形成的矩形區(qū)域,可能有很多,車牌就在其中一個(gè)矩形區(qū)域中
		try:
			contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
		except ValueError:
			image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
		contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]
		print('len(contours)', len(contours))
		#一一排除不是車牌的矩形區(qū)域
		car_contours = []
		for cnt in contours:
			rect = cv2.minAreaRect(cnt)
			area_width, area_height = rect[1]
			if area_width < area_height:
				area_width, area_height = area_height, area_width
			wh_ratio = area_width / area_height
			#print(wh_ratio)
			#要求矩形區(qū)域長(zhǎng)寬比在2到5.5之間,2到5.5是車牌的長(zhǎng)寬比,其余的矩形排除
			if wh_ratio > 2 and wh_ratio < 5.5:
				car_contours.append(rect)
				box = cv2.boxPoints(rect)
				box = np.int0(box)
				#oldimg = cv2.drawContours(oldimg, [box], 0, (0, 0, 255), 2)
				#cv2.imshow("edge4", oldimg)
				#cv2.waitKey(0)

		print(len(car_contours))

		print("精確定位")
		card_imgs = []
		#矩形區(qū)域可能是傾斜的矩形,需要矯正,以便使用顏色定位
		for rect in car_contours:
			if rect[2] > -1 and rect[2] < 1:#創(chuàng)造角度,使得左、高、右、低拿到正確的值
				angle = 1
			else:
				angle = rect[2]
			rect = (rect[0], (rect[1][0]+5, rect[1][1]+5), angle)#擴(kuò)大范圍,避免車牌邊緣被排除

			box = cv2.boxPoints(rect)
			heigth_point = right_point = [0, 0]
			left_point = low_point = [pic_width, pic_hight]
			for point in box:
				if left_point[0] > point[0]:
					left_point = point
				if low_point[1] > point[1]:
					low_point = point
				if heigth_point[1] < point[1]:
					heigth_point = point
				if right_point[0] < point[0]:
					right_point = point

			if left_point[1] <= right_point[1]:#正角度
				new_right_point = [right_point[0], heigth_point[1]]
				pts2 = np.float32([left_point, heigth_point, new_right_point])#字符只是高度需要改變
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(new_right_point)
				point_limit(heigth_point)
				point_limit(left_point)
				card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
				card_imgs.append(card_img)
				#cv2.imshow("card", card_img)
				#cv2.waitKey(0)
			elif left_point[1] > right_point[1]:#負(fù)角度
				
				new_left_point = [left_point[0], heigth_point[1]]
				pts2 = np.float32([new_left_point, heigth_point, right_point])#字符只是高度需要改變
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(right_point)
				point_limit(heigth_point)
				point_limit(new_left_point)
				card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
				card_imgs.append(card_img)
				#cv2.imshow("card", card_img)
				#cv2.waitKey(0)
		#開始使用顏色定位,排除不是車牌的矩形,目前只識(shí)別藍(lán)、綠、黃車牌
		colors = []
		for card_index,card_img in enumerate(card_imgs):
			green = yello = blue = black = white = 0
			card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
			#有轉(zhuǎn)換失敗的可能,原因來自于上面矯正矩形出錯(cuò)
			if card_img_hsv is None:
				continue
			row_num, col_num= card_img_hsv.shape[:2]
			card_img_count = row_num * col_num

			for i in range(row_num):
				for j in range(col_num):
					H = card_img_hsv.item(i, j, 0)
					S = card_img_hsv.item(i, j, 1)
					V = card_img_hsv.item(i, j, 2)
					if 11 < H <= 34 and S > 34:#圖片分辨率調(diào)整
						yello += 1
					elif 35 < H <= 99 and S > 34:#圖片分辨率調(diào)整
						green += 1
					elif 99 < H <= 124 and S > 34:#圖片分辨率調(diào)整
						blue += 1
					
					if 0 < H <180 and 0 < S < 255 and 0 < V < 46:
						black += 1
					elif 0 < H <180 and 0 < S < 43 and 221 < V < 225:
						white += 1
			color = "no"

			limit1 = limit2 = 0
			if yello*2 >= card_img_count:
				color = "yello"
				limit1 = 11
				limit2 = 34#有的圖片有色偏偏綠
			elif green*2 >= card_img_count:
				color = "green"
				limit1 = 35
				limit2 = 99
			elif blue*2 >= card_img_count:
				color = "blue"
				limit1 = 100
				limit2 = 124#有的圖片有色偏偏紫
			elif black + white >= card_img_count*0.7:#TODO
				color = "bw"
			print(color)
			colors.append(color)
			print(blue, green, yello, black, white, card_img_count)
			#cv2.imshow("color", card_img)
			#cv2.waitKey(0)
			if limit1 == 0:
				continue
			#以上為確定車牌顏色
			#以下為根據(jù)車牌顏色再定位,縮小邊緣非車牌邊界
			xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
			if yl == yh and xl == xr:
				continue
			need_accurate = False
			if yl >= yh:
				yl = 0
				yh = row_num
				need_accurate = True
			if xl >= xr:
				xl = 0
				xr = col_num
				need_accurate = True
			card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]
			if need_accurate:#可能x或y方向未縮小,需要再試一次
				card_img = card_imgs[card_index]
				card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
				xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
				if yl == yh and xl == xr:
					continue
				if yl >= yh:
					yl = 0
					yh = row_num
				if xl >= xr:
					xl = 0
					xr = col_num
			card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]
		#以上為車牌定位
		#以下為識(shí)別車牌中的字符
		predict_result = []
		roi = None
		card_color = None
		for i, color in enumerate(colors):
			if color in ("blue", "yello", "green"):
				card_img = card_imgs[i]
				gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
				#黃、綠車牌字符比背景暗、與藍(lán)車牌剛好相反,所以黃、綠車牌需要反向
				if color == "green" or color == "yello":
					gray_img = cv2.bitwise_not(gray_img)
				ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
				#查找水平直方圖波峰
				x_histogram  = np.sum(gray_img, axis=1)
				x_min = np.min(x_histogram)
				x_average = np.sum(x_histogram)/x_histogram.shape[0]
				x_threshold = (x_min + x_average)/2
				wave_peaks = find_waves(x_threshold, x_histogram)
				if len(wave_peaks) == 0:
					print("peak less 0:")
					continue
				#認(rèn)為水平方向,最大的波峰為車牌區(qū)域
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				gray_img = gray_img[wave[0]:wave[1]]
				#查找垂直直方圖波峰
				row_num, col_num= gray_img.shape[:2]
				#去掉車牌上下邊緣1個(gè)像素,避免白邊影響閾值判斷
				gray_img = gray_img[1:row_num-1]
				y_histogram = np.sum(gray_img, axis=0)
				y_min = np.min(y_histogram)
				y_average = np.sum(y_histogram)/y_histogram.shape[0]
				y_threshold = (y_min + y_average)/5#U和0要求閾值偏小,否則U和0會(huì)被分成兩半

				wave_peaks = find_waves(y_threshold, y_histogram)

				#for wave in wave_peaks:
				#	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) 
				#車牌字符數(shù)應(yīng)大于6
				if len(wave_peaks) <= 6:
					print("peak less 1:", len(wave_peaks))
					continue
				
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				max_wave_dis = wave[1] - wave[0]
				#判斷是否是左側(cè)車牌邊緣
				if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
					wave_peaks.pop(0)
				
				#組合分離漢字
				cur_dis = 0
				for i,wave in enumerate(wave_peaks):
					if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
						break
					else:
						cur_dis += wave[1] - wave[0]
				if i > 0:
					wave = (wave_peaks[0][0], wave_peaks[i][1])
					wave_peaks = wave_peaks[i+1:]
					wave_peaks.insert(0, wave)
				
				#去除車牌上的分隔點(diǎn)
				point = wave_peaks[2]
				if point[1] - point[0] < max_wave_dis/3:
					point_img = gray_img[:,point[0]:point[1]]
					if np.mean(point_img) < 255/5:
						wave_peaks.pop(2)
				
				if len(wave_peaks) <= 6:
					print("peak less 2:", len(wave_peaks))
					continue
				part_cards = seperate_card(gray_img, wave_peaks)
				for i, part_card in enumerate(part_cards):
					#可能是固定車牌的鉚釘
					if np.mean(part_card) < 255/5:
						print("a point")
						continue
					part_card_old = part_card
					#w = abs(part_card.shape[1] - SZ)//2
					w = part_card.shape[1] // 3
					part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])
					part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
					#cv2.imshow("part", part_card_old)
					#cv2.waitKey(0)
					#cv2.imwrite("u.jpg", part_card)
					#part_card = deskew(part_card)
					part_card = preprocess_hog([part_card])
					if i == 0:
						resp = self.modelchinese.predict(part_card)
						charactor = provinces[int(resp[0]) - PROVINCE_START]
					else:
						resp = self.model.predict(part_card)
						charactor = chr(resp[0])
					#判斷最后一個(gè)數(shù)是否是車牌邊緣,假設(shè)車牌邊緣被認(rèn)為是1
					if charactor == "1" and i == len(part_cards)-1:
						if part_card_old.shape[0]/part_card_old.shape[1] >= 8:#1太細(xì),認(rèn)為是邊緣
							print(part_card_old.shape)
							continue
					predict_result.append(charactor)
				roi = card_img
				card_color = color
				break
				
		return predict_result, roi, card_color#識(shí)別到的字符、定位的車牌圖像、車牌顏色

if __name__ == '__main__':
	c = CardPredictor()
	c.train_svm()
	r, roi, color = c.predict("2.jpg")
	print(r)
	

到了這里,關(guān)于車牌識(shí)別系統(tǒng) opencv的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場(chǎng)。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • 畢業(yè)設(shè)計(jì)選題-計(jì)算機(jī)視覺:復(fù)雜場(chǎng)景下的車牌識(shí)別系統(tǒng) 人工智能 深度學(xué)習(xí) YOLO

    畢業(yè)設(shè)計(jì)選題-計(jì)算機(jī)視覺:復(fù)雜場(chǎng)景下的車牌識(shí)別系統(tǒng) 人工智能 深度學(xué)習(xí) YOLO

    目錄 前言 項(xiàng)目背景與簡(jiǎn)介 主要設(shè)計(jì)思路 一、算法理論技術(shù) 1.1 神經(jīng)網(wǎng)絡(luò)基礎(chǔ) 1.2 深度神經(jīng)網(wǎng)絡(luò) 1.3 目標(biāo)檢測(cè) 二、數(shù)據(jù)處理 2.1 數(shù)據(jù)采集 三、實(shí)現(xiàn)的效果 更多幫助 ? ? ??大四是整個(gè)大學(xué)期間最忙碌的時(shí)光,一邊要忙著備考或?qū)嵙?xí)為畢業(yè)后面臨的就業(yè)升學(xué)做準(zhǔn)備,一邊要為畢業(yè)設(shè)

    2024年02月03日
    瀏覽(230)
  • 深度學(xué)習(xí)畢業(yè)設(shè)計(jì) python車牌識(shí)別系統(tǒng) - opencv

    深度學(xué)習(xí)畢業(yè)設(shè)計(jì) python車牌識(shí)別系統(tǒng) - opencv

    # 1 前言 ?? 基于python 機(jī)器視覺 的車牌識(shí)別系統(tǒng) ??學(xué)長(zhǎng)這里給一個(gè)題目綜合評(píng)分(每項(xiàng)滿分5分) 難度系數(shù):3分 工作量:3分 創(chuàng)新點(diǎn):2分 選題指導(dǎo),項(xiàng)目分享: https://gitee.com/yaa-dc/warehouse-1/blob/master/python/README.md 車牌識(shí)別其實(shí)是個(gè)經(jīng)典的機(jī)器視覺任務(wù)了,通過圖像處理技術(shù)檢測(cè)

    2024年02月05日
    瀏覽(29)
  • 基于opencv的車牌識(shí)別系統(tǒng)(UI界面采用tkinter設(shè)計(jì))

    基于opencv的車牌識(shí)別系統(tǒng)(UI界面采用tkinter設(shè)計(jì))

    本系統(tǒng)采用python語言搭配opencv進(jìn)行開發(fā),在傳統(tǒng)的車牌識(shí)別項(xiàng)目上進(jìn)行改進(jìn),開發(fā)獨(dú)特的GUI界面,方便使用者的使用。 需要源碼的朋友點(diǎn)贊、關(guān)注我、再私信我獲取源碼,如果未能及時(shí)回復(fù)可以留下郵箱耐心等待奧 先上運(yùn)行截圖(下圖分別為圖片識(shí)別和攝像頭識(shí)別結(jié)果) 項(xiàng)

    2023年04月23日
    瀏覽(92)
  • 計(jì)算機(jī)java項(xiàng)目 - 基于opencv與SVM的車牌識(shí)別系統(tǒng)

    計(jì)算機(jī)java項(xiàng)目 - 基于opencv與SVM的車牌識(shí)別系統(tǒng)

    基于opencv與SVM的車牌識(shí)別系統(tǒng) 提示:適合用于課程設(shè)計(jì)或畢業(yè)設(shè)計(jì),工作量達(dá)標(biāo),源碼開放 用python3+opencv3做的中國(guó)車牌識(shí)別,包括算法和客戶端界面,只有2個(gè)文件,surface.py是界面代碼,predict.py是算法代碼,界面不是重點(diǎn)所以用tkinter寫得很簡(jiǎn)單。 python3.7.3 opencv4.0.0.21 numpy

    2024年02月20日
    瀏覽(24)
  • 機(jī)器視覺畢業(yè)設(shè)計(jì) python車牌識(shí)別系統(tǒng) - opencv 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)

    機(jī)器視覺畢業(yè)設(shè)計(jì) python車牌識(shí)別系統(tǒng) - opencv 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)

    # 1 前言 ?? 基于python 機(jī)器視覺 的車牌識(shí)別系統(tǒng) ??學(xué)長(zhǎng)這里給一個(gè)題目綜合評(píng)分(每項(xiàng)滿分5分) 難度系數(shù):3分 工作量:3分 創(chuàng)新點(diǎn):2分 車牌識(shí)別其實(shí)是個(gè)經(jīng)典的機(jī)器視覺任務(wù)了,通過圖像處理技術(shù)檢測(cè)、定位、識(shí)別車牌上的字符,實(shí)現(xiàn)計(jì)算機(jī)對(duì)車牌的智能管理功能。如今在

    2024年02月13日
    瀏覽(28)
  • 基于Java(SpringBoot框架)畢業(yè)設(shè)計(jì)作品成品(32)AI人工智能畢設(shè)AI車輛大全車牌識(shí)別系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)

    基于Java(SpringBoot框架)畢業(yè)設(shè)計(jì)作品成品(32)AI人工智能畢設(shè)AI車輛大全車牌識(shí)別系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)

    博主介紹: 《Vue.js入門與商城開發(fā)實(shí)戰(zhàn)》《微信小程序商城開發(fā)》圖書作者,CSDN博客專家,在線教育專家,CSDN鉆石講師;專注大學(xué)生畢業(yè)設(shè)計(jì)教育和輔導(dǎo)。 所有項(xiàng)目都配有從入門到精通的基礎(chǔ)知識(shí)視頻課程,免費(fèi) 項(xiàng)目配有對(duì)應(yīng)開發(fā)文檔、開題報(bào)告、任務(wù)書、PPT、論文模版

    2024年02月08日
    瀏覽(30)
  • 【功能超全】基于OpenCV車牌識(shí)別停車場(chǎng)管理系統(tǒng)軟件開發(fā)【含python源碼+PyqtUI界面+功能詳解】-車牌識(shí)別python 深度學(xué)習(xí)實(shí)戰(zhàn)項(xiàng)目

    【功能超全】基于OpenCV車牌識(shí)別停車場(chǎng)管理系統(tǒng)軟件開發(fā)【含python源碼+PyqtUI界面+功能詳解】-車牌識(shí)別python 深度學(xué)習(xí)實(shí)戰(zhàn)項(xiàng)目

    摘要: 車牌識(shí)別系統(tǒng)(Vehicle License Plate Recognition,VLPR) 是指能夠檢測(cè)到受監(jiān)控路面的車輛并自動(dòng)提取車輛牌照信息(含漢字字符、英文字母、阿拉伯?dāng)?shù)字及號(hào)牌顏色)進(jìn)行處理的技術(shù)。車牌識(shí)別是現(xiàn)代智能交通系統(tǒng)中的重要組成部分之一,應(yīng)用十分廣泛。本文詳細(xì)介紹了 車牌

    2024年02月09日
    瀏覽(27)
  • 33、基于STM32單片機(jī)車牌識(shí)別系統(tǒng)攝像頭圖像處理系統(tǒng)設(shè)計(jì)

    33、基于STM32單片機(jī)車牌識(shí)別系統(tǒng)攝像頭圖像處理系統(tǒng)設(shè)計(jì)

    畢設(shè)幫助、開題指導(dǎo)、技術(shù)解答(有償)見文末。 目錄 摘要 一、硬件方案 二、設(shè)計(jì)功能 三、實(shí)物圖 四、原理圖 五、PCB圖 六、程序源碼 七、資料包括 隨著汽車工業(yè)的迅猛發(fā)展,我國(guó)汽車擁有量急劇增加。停車場(chǎng)作為交通設(shè)施的組成部分,隨著交通運(yùn)輸?shù)姆泵筒粩喟l(fā)展,

    2024年02月15日
    瀏覽(32)
  • OpenCV(項(xiàng)目)車牌識(shí)別1 -- 車牌提?。ㄐ螒B(tài)學(xué))

    OpenCV(項(xiàng)目)車牌識(shí)別1 -- 車牌提?。ㄐ螒B(tài)學(xué))

    目錄 一、形態(tài)學(xué)車牌提取(簡(jiǎn)單:?jiǎn)吻榫埃??1、讀取圖片,轉(zhuǎn)灰度圖 ?2、提取輪廓(Sobel算子提取y方向邊緣) 3、自適應(yīng)二值化 4、閉運(yùn)算處理,把圖像閉合、揉團(tuán),使圖像區(qū)域化 5、腐蝕/膨脹去噪得到車牌區(qū)域 5-1、橫向腐蝕、膨脹 5-2、縱向腐蝕、膨脹 6、獲取外輪廓 6-1、

    2024年02月08日
    瀏覽(21)
  • opencv-車牌識(shí)別

    opencv-車牌識(shí)別

    ? 最近研究了幾天車牌識(shí)別的項(xiàng)目,現(xiàn)在記錄一下學(xué)習(xí)的過程,基于OpenCV編寫Python代碼來完成這一任務(wù)。 ? 文章末尾有源碼,有興趣的讀者可以用jupyter notebook一步一步看執(zhí)行過程和結(jié)果。 本項(xiàng)目車牌識(shí)別的步驟為: 加載圖片 高斯去噪 灰度轉(zhuǎn)換 邊緣檢測(cè) 閉運(yùn)算,腐蝕膨脹

    2024年02月05日
    瀏覽(19)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包