注:書中對(duì)代碼的講解并不詳細(xì),本文對(duì)很多細(xì)節(jié)做了詳細(xì)注釋。另外,書上的源代碼是在Jupyter Notebook上運(yùn)行的,較為分散,本文將代碼集中起來,并加以完善,全部用vscode在python 3.9.18下測(cè)試通過,同時(shí)對(duì)于書上部分章節(jié)也做了整合。
Chapter8 Recurrent Neural Networks
8.6 Concise Implementation of RNN
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import matplotlib.pyplot as plt
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)
state = torch.zeros((1, batch_size, num_hiddens))
print(state.shape)
X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)#Y不涉及輸出層的計(jì)算
print(Y.shape, state_new.shape)
class RNNModel(nn.Module):#@save
"""循環(huán)神經(jīng)網(wǎng)絡(luò)模型"""
def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
# 如果RNN是雙向的(之后將介紹),num_directions應(yīng)該是2,否則應(yīng)該是1
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
# 全連接層首先將Y的形狀改為(時(shí)間步數(shù)*批量大小,隱藏單元數(shù)),它的輸出形狀是(時(shí)間步數(shù)*批量大小,詞表大小)。
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size=1):
if not isinstance(self.rnn, nn.LSTM):
#nn.GRU以張量作為隱狀態(tài)
#GRU為門控循環(huán)單元(Gated Recurrent Unit),是一種流行的循環(huán)神經(jīng)網(wǎng)絡(luò)變體。
#GRU使用了一組門控機(jī)制來控制信息的流動(dòng),包括更新門(update gate)和重置門(reset gate),以更好地捕捉長(zhǎng)期依賴關(guān)系
return torch.zeros((self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens),
device=device)
else:
#nn.LSTM以元組作為隱狀態(tài)
#LSTM代表長(zhǎng)短期記憶網(wǎng)絡(luò)(Long Short-Term Memory),是另一種常用的循環(huán)神經(jīng)網(wǎng)絡(luò)類型。
#相比于簡(jiǎn)單的循環(huán)神經(jīng)網(wǎng)絡(luò),LSTM引入了三個(gè)門控單元:輸入門(input gate)、遺忘門(forget gate)和輸出門(output gate),以及一個(gè)記憶單元(cell state),可以更有效地處理長(zhǎng)期依賴性。
return (torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device),
torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device))
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)
num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)
plt.show()
訓(xùn)練結(jié)果:文章來源:http://www.zghlxwxcb.cn/news/detail-829295.html
與上一節(jié)相比,由于pytorch的高級(jí)API對(duì)代碼進(jìn)行了更多的優(yōu)化,該模型在較短的時(shí)間內(nèi)達(dá)到了較低的困惑度。文章來源地址http://www.zghlxwxcb.cn/news/detail-829295.html
到了這里,關(guān)于《動(dòng)手學(xué)深度學(xué)習(xí)(PyTorch版)》筆記8.6的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!