為什么是false?
①檢查GPU是否支持CUDA?
支持
理解Package結(jié)構(gòu)及法寶函數(shù)的作用
pytorch就像一個(gè)工具箱
dir():打開操作,能看到里面有什么東西---->dir(torch)
help():說明書---->help(torch.cuda.is_available)
From torch.utils.data import Dataset
pytorch如何讀取數(shù)據(jù)?
①Dataset
?提供一種方式去獲取數(shù)據(jù)及其label
如何獲取每一個(gè)數(shù)據(jù)及其label
告訴我們總共有多少的數(shù)據(jù)
②Dataloader
為網(wǎng)絡(luò)提供不同的數(shù)據(jù)形式
Tensorboard的使用
Global_step:x軸
Scalar_value:y軸
如何讀取logs里面的文件
PS F:\HDU\PyTorchStudy> tensorboard --logdir=logs
指定端口:tensorboard --logdir=logs --port=6007
結(jié)果:有圖像展示
圖像變換,transform的使用
利用numpy.array(),對PIL圖片進(jìn)行轉(zhuǎn)換
torchvision中的transforms:對圖像進(jìn)行一個(gè)變換
Transforms.py 工具箱
Totensor/resize/。。。
圖片--->工具 --->結(jié)果
結(jié)果:
tensor([[[0.3137, 0.3137, 0.3137,? ..., 0.3176, 0.3098, 0.2980],
???????? [0.3176, 0.3176, 0.3176,? ..., 0.3176, 0.3098, 0.2980],
???????? [0.3216, 0.3216, 0.3216,? ..., 0.3137, 0.3098, 0.3020],
???????? ...,
???????? [0.3412, 0.3412, 0.3373,? ..., 0.1725, 0.3725, 0.3529],
???????? [0.3412, 0.3412, 0.3373,? ..., 0.3294, 0.3529, 0.3294],
???????? [0.3412, 0.3412, 0.3373,? ..., 0.3098, 0.3059, 0.3294]],
??????? [[0.5922, 0.5922, 0.5922,? ..., 0.5961, 0.5882, 0.5765],
???????? [0.5961, 0.5961, 0.5961,? ..., 0.5961, 0.5882, 0.5765],
???????? [0.6000, 0.6000, 0.6000,? ..., 0.5922, 0.5882, 0.5804],
???????? ...,
???????? [0.6275, 0.6275, 0.6235,? ..., 0.3608, 0.6196, 0.6157],
???????? [0.6275, 0.6275, 0.6235,? ..., 0.5765, 0.6275, 0.5961],
???????? [0.6275, 0.6275, 0.6235,? ..., 0.6275, 0.6235, 0.6314]],
??????? [[0.9137, 0.9137, 0.9137,? ..., 0.9176, 0.9098, 0.8980],
???????? [0.9176, 0.9176, 0.9176,? ..., 0.9176, 0.9098, 0.8980],
???????? [0.9216, 0.9216, 0.9216,? ..., 0.9137, 0.9098, 0.9020],
???????? ...,
???????? [0.9294, 0.9294, 0.9255,? ..., 0.5529, 0.9216, 0.8941],
???????? [0.9294, 0.9294, 0.9255,? ..., 0.8863, 1.0000, 0.9137],
???????? [0.9294, 0.9294, 0.9255,? ..., 0.9490, 0.9804, 0.9137]]])
常見的Transforms
輸入 |
?????? PIL? |
?? Image.open() |
輸出 |
tensor |
ToTensor() |
作用 |
narrays |
Cv.imread() |
call的使用
__call__Hello zhangsan
Hellolisi
?
?
?
?
?
?
歸一化:Normalize
output[channel] = (input[channel] - mean[channel]) / std[channel]
<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x333 at 0x232A68BC488>
tensor(0.8863)
tensor(0.7725)
?
?
?
Resize()的使用
(500, 333)
tensor([[[0.8863, 0.8824, 0.8745,? ..., 0.8392, 0.8392, 0.8392],
???????? [0.8824, 0.8784, 0.8706,? ..., 0.8392, 0.8392, 0.8392],
???????? [0.8784, 0.8745, 0.8667,? ..., 0.8353, 0.8353, 0.8353],
???????? ...,
???????? [1.0000, 1.0000, 1.0000,? ..., 0.8314, 0.8314, 0.8314],
???????? [1.0000, 1.0000, 1.0000,? ..., 0.8314, 0.8314, 0.8314],
???????? [1.0000, 1.0000, 1.0000,? ..., 0.8314, 0.8314, 0.8314]],
??????? [[0.1451, 0.1412, 0.1333,? ..., 0.8471, 0.8471, 0.8471],
???????? [0.1451, 0.1412, 0.1333,? ..., 0.8471, 0.8471, 0.8471],
???????? [0.1490, 0.1451, 0.1373,? ..., 0.8431, 0.8431, 0.8431],
???????? ...,
???????? [0.8275, 0.8275, 0.8275,? ..., 0.8549, 0.8549, 0.8549],
???????? [0.8275, 0.8275, 0.8275,? ..., 0.8549, 0.8549, 0.8549],
???????? [0.8275, 0.8275, 0.8275,? ..., 0.8549, 0.8549, 0.8549]],
??????? [[0.1686, 0.1647, 0.1569,? ..., 0.4275, 0.4275, 0.4275],
???????? [0.1686, 0.1647, 0.1569,? ..., 0.4275, 0.4275, 0.4275],
???????? [0.1686, 0.1647, 0.1569,? ..., 0.4235, 0.4235, 0.4235],
???????? ...,
???????? [0.0078, 0.0078, 0.0078,? ..., 0.4235, 0.4235, 0.4235],
???????? [0.0078, 0.0078, 0.0078,? ..., 0.4235, 0.4235, 0.4235],
???????? [0.0078, 0.0078, 0.0078,? ..., 0.4235, 0.4235, 0.4235]]])
?
?
?
Compose()用法
數(shù)據(jù)需要時(shí)transforms類型,所以得到Compose([transforms參數(shù)1,transforms參數(shù)2,…])
RandomCrop
關(guān)注輸入和輸出類型
多看官方文檔
關(guān)注方法需要什么參數(shù)
不知道返回值的時(shí)候
*print(type())
*debug
DataLoader的使用
例:
Dataloader(batch_size=4)
Img0,target0 = dataset[0]
Img1,target1 = dataset[1]
Img2,target2 = dataset[2]
Img3,target3 = dataset[3]
Getitem():
Return img,target文章來源:http://www.zghlxwxcb.cn/news/detail-783090.html
神經(jīng)網(wǎng)絡(luò)的搭建nn.Module文章來源地址http://www.zghlxwxcb.cn/news/detail-783090.html
到了這里,關(guān)于PyTorch自學(xué)&遇到的一些錯(cuò)誤的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!