国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

LLaMA-Factory使用V100微調(diào)ChatGLM2報錯 RuntimeError: “addmm_impl_cpu_“ not implemented for ‘Half‘

這篇具有很好參考價值的文章主要介紹了LLaMA-Factory使用V100微調(diào)ChatGLM2報錯 RuntimeError: “addmm_impl_cpu_“ not implemented for ‘Half‘。希望對大家有所幫助。如果存在錯誤或未考慮完全的地方,請大家不吝賜教,您也可以點擊"舉報違法"按鈕提交疑問。

微調(diào)命令

CUDA_VISIBLE_DEVICES=0 python /aaa/LLaMA-Factory/src/train_bash.py \
    --stage sft \
    --model_name_or_path /aaa/LLaMA-Factory/models/chatglm2-6b \
    --do_train \
    --dataset bbbccc \
    --template chatglm2 \
    --finetuning_type lora \
    --lora_target query_key_value \
    --output_dir output/dddeee/ \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 10 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss 

已經(jīng)從huggingface下載完整的模型并配置正確路徑,也對自定義數(shù)據(jù)集仿照alpaca_gpt4_data_zh.json在dataset_info.json中寫入相關(guān)配置。但運行如上命令還是有報錯如下:


[INFO|training_args.py:1798] 2023-11-02 16:00:19,165 >> PyTorch: setting up devices
Detected kernel version 3.10.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
[INFO|trainer.py:1760] 2023-11-02 16:00:19,402 >> ***** Running training *****
[INFO|trainer.py:1761] 2023-11-02 16:00:19,402 >>   Num examples = 1,372
[INFO|trainer.py:1762] 2023-11-02 16:00:19,402 >>   Num Epochs = 3
[INFO|trainer.py:1763] 2023-11-02 16:00:19,402 >>   Instantaneous batch size per device = 4
[INFO|trainer.py:1766] 2023-11-02 16:00:19,402 >>   Total train batch size (w. parallel, distributed & accumulation) = 16
[INFO|trainer.py:1767] 2023-11-02 16:00:19,403 >>   Gradient Accumulation steps = 4
[INFO|trainer.py:1768] 2023-11-02 16:00:19,403 >>   Total optimization steps = 255
[INFO|trainer.py:1769] 2023-11-02 16:00:19,404 >>   Number of trainable parameters = 1,949,696
  0%|                                                                                                                       | 0/255 [00:00<?, ?it/s]/aaa/envs/bbb_llama_factory_py310/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
Traceback (most recent call last):
  File "/aaa/LLaMA-Factory/src/train_bash.py", line 14, in <module>
    main()
  File "/aaa/LLaMA-Factory/src/train_bash.py", line 5, in main
    run_exp()
  File "/aaa/LLaMA-Factory/src/llmtuner/tuner/tune.py", line 26, in run_exp
    run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
  File "/aaa/LLaMA-Factory/src/llmtuner/tuner/sft/workflow.py", line 67, in run_sft
    train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/transformers/trainer.py", line 1591, in train
    return inner_training_loop(
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/transformers/trainer.py", line 1892, in _inner_training_loop
    tr_loss_step = self.training_step(model, inputs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/transformers/trainer.py", line 2776, in training_step
    loss = self.compute_loss(model, inputs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/transformers/trainer.py", line 2801, in compute_loss
    outputs = model(**inputs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/peft/peft_model.py", line 918, in forward
    return self.base_model(
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/peft/tuners/tuners_utils.py", line 94, in forward
    return self.model.forward(*args, **kwargs)
  File "/xxxcache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 937, in forward
    transformer_outputs = self.transformer(
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
  File "/xxxcache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 830, in forward
    hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
  File "/xxxcache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 631, in forward
    layer_ret = torch.utils.checkpoint.checkpoint(
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/_compile.py", line 24, in inner
    return torch._dynamo.disable(fn, recursive)(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 328, in _fn
    return fn(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/_dynamo/external_utils.py", line 17, in inner
    return fn(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/utils/checkpoint.py", line 451, in checkpoint
    return CheckpointFunction.apply(function, preserve, *args)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/autograd/function.py", line 539, in apply
    return super().apply(*args, **kwargs)  # type: ignore[misc]
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/utils/checkpoint.py", line 230, in forward
    outputs = run_function(*args)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
  File "/xxxcache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 544, in forward
    attention_output, kv_cache = self.self_attention(
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
  File "/xxxcache/huggingface/modules/transformers_modules/chatglm2-6b/modeling_chatglm.py", line 376, in forward
    mixed_x_layer = self.query_key_value(hidden_states)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl
    return forward_call(*args, **kwargs)
  File "/envs/llama_factory_py310/lib/python3.10/site-packages/peft/tuners/lora.py", line 902, in forward
    result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
  0%|                                                                                  | 0/255 [00:00<?, ?it/s]

命令運行過程中,看上去已經(jīng)成功加載模型了,應(yīng)該是訓(xùn)練第1個epoch時的報錯。我--fp16加到上面的命令中運行,也有報錯。

這是與開源社區(qū)交流的記錄: https://github.com/hiyouga/LLaMA-Factory/issues/1359文章來源地址http://www.zghlxwxcb.cn/news/detail-759674.html

  • 原因:cuda 環(huán)境問題
  • 解決方案:pip install torch==2.0.1
  • 排查:打log看torch.cuda.is_available()輸出為False說明CUDA環(huán)境有問題

到了這里,關(guān)于LLaMA-Factory使用V100微調(diào)ChatGLM2報錯 RuntimeError: “addmm_impl_cpu_“ not implemented for ‘Half‘的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實不符,請點擊違法舉報進行投訴反饋,一經(jīng)查實,立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費用

相關(guān)文章

  • Llama3-8B+ LLaMA-Factory 中文微調(diào)

    Llama3是目前開源大模型中最優(yōu)秀的模型之一,但是原生的Llama3模型訓(xùn)練的中文語料占比非常低,因此在中文的表現(xiàn)方便略微欠佳! 本教程就以Llama3-8B-Instruct開源模型為模型基座,通過開源程序LLaMA-Factory來進行中文的微調(diào),提高Llama3的中文能力!LLaMA-Factory是一個開源的模型訓(xùn)

    2024年04月27日
    瀏覽(31)
  • llama-factory SFT 系列教程 (四),lora sft 微調(diào)后,使用vllm加速推理

    llama-factory SFT 系列教程 (四),lora sft 微調(diào)后,使用vllm加速推理

    llama-factory SFT系列教程 (一),大模型 API 部署與使用 llama-factory SFT系列教程 (二),大模型在自定義數(shù)據(jù)集 lora 訓(xùn)練與部署 llama-factory SFT系列教程 (三),chatglm3-6B 命名實體識別實戰(zhàn) llama-factory SFT 系列教程 (四),lora sft 微調(diào)后,使用vllm加速推理 llama-factory 提供了 vllm API 部署,但筆

    2024年04月27日
    瀏覽(20)
  • Llama-Factory的baichuan2微調(diào)

    Llama-Factory的baichuan2微調(diào)

    Llama-Factory:https://github.com/hiyouga/LLaMA-Factory/tree/main 請使用? ?來啟用 QLoRA 訓(xùn)練。 (1)獎勵模型訓(xùn)練 (2)PPO訓(xùn)練(PPO訓(xùn)練需要先進行上一步RM的訓(xùn)練,然后導(dǎo)入微調(diào)后模型和RM進行訓(xùn)練輸出) ? ? ? ?大規(guī)模無監(jiān)督語言模型(LMs)雖然可以學(xué)習(xí)廣泛的世界知識和一些推理技能

    2024年02月05日
    瀏覽(20)
  • 從零開始的LLaMA-Factory的指令增量微調(diào)

    從零開始的LLaMA-Factory的指令增量微調(diào)

    大模型,包括部署微調(diào)prompt/Agent應(yīng)用開發(fā)、知識庫增強、數(shù)據(jù)庫增強、知識圖譜增強、自然語言處理、多模態(tài)等大模型應(yīng)用開發(fā)內(nèi)容 從0起步,揚帆起航。 大模型應(yīng)用向開發(fā)路徑及一點個人思考 大模型應(yīng)用開發(fā)實用開源項目匯總 大模型問答項目問答性能評估方法 大模型數(shù)據(jù)

    2024年04月09日
    瀏覽(31)
  • 安裝LLaMA-Factory微調(diào)chatglm3,修改自我認知

    安裝LLaMA-Factory微調(diào)chatglm3,修改自我認知

    安裝git clone https://github.com/hiyouga/LLaMA-Factory.git conda create -n llama_factory python=3.10 conda activate llama_factory cd LLaMA-Factory pip install -r requirements.txt 之后運行 單卡訓(xùn)練, CUDA_VISIBLE_DEVICES=0 python src/train_web.py,按如下配置 demo_tran.sh ? export_model.sh ? cli_demo.sh 注意合并模型的時候,最后復(fù)制

    2024年02月04日
    瀏覽(28)
  • LLaMA-Factory微調(diào)(sft)ChatGLM3-6B保姆教程

    LLaMA-Factory微調(diào)(sft)ChatGLM3-6B保姆教程

    下載LLaMA-Factory 下載ChatGLM3-6B 下載ChatGLM3 windows下載CUDA ToolKit 12.1 (本人是在windows進行訓(xùn)練的,顯卡GTX 1660 Ti) CUDA安裝完畢后,通過指令 nvidia-smi 查看 1、選擇下載目錄:E:llm-trainLLaMA-Factory,并打開 2、創(chuàng)建新的python環(huán)境,這里使用conda創(chuàng)建一個python空環(huán)境,選擇python3.10 參考

    2024年04月13日
    瀏覽(33)
  • 快速上手!LLaMa-Factory最新微調(diào)實踐,輕松實現(xiàn)專屬大模型

    快速上手!LLaMa-Factory最新微調(diào)實踐,輕松實現(xiàn)專屬大模型

    Yuan2.0(https://huggingface.co/IEITYuan)是浪潮信息發(fā)布的新一代基礎(chǔ)語言大模型,該模型擁有優(yōu)異的數(shù)學(xué)、代碼能力。自發(fā)布以來,Yuan2.0已經(jīng)受到了業(yè)界廣泛的關(guān)注。當(dāng)前Yuan2.0已經(jīng)開源參數(shù)量分別是102B、51B和2B的3個基礎(chǔ)模型,以供研發(fā)人員做進一步的開發(fā)。 LLM(大語言模型)微

    2024年01月20日
    瀏覽(24)
  • LLaMA-Factory 8卡4090 deepspeed zero3 微調(diào)Qwen14B-chat

    LLaMA-Factory 8卡4090 deepspeed zero3 微調(diào)Qwen14B-chat

    環(huán)境安裝 推薦使用docker,Ubuntu20.04 https://www.modelscope.cn/docs/%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85 下載模型 在modelscope主頁,找到模型 https://modelscope.cn/models/qwen/Qwen-14B-Chat/summary 可以使用如下腳本 微調(diào) 使用LLaMA-Factory, 下載下面?zhèn)}庫的代碼, https://github.com/hiyouga/LLaMA-Factory 在代碼目錄,

    2024年04月15日
    瀏覽(24)
  • 【本地大模型部署與微調(diào)】ChatGLM3-6b、m3e、one-api、Fastgpt、LLaMA-Factory

    【本地大模型部署與微調(diào)】ChatGLM3-6b、m3e、one-api、Fastgpt、LLaMA-Factory

    本文檔詳細介紹了使用ChatGLM3-6b大模型、m3e向量模型、one-api接口管理以及Fastgpt的知識庫,成功的在本地搭建了一個大模型。此外,還利用LLaMA-Factory進行了大模型的微調(diào)。 1.ChatGLM3-6b 2.m3e 3.One-API 4.Fastgpt 5.LLaMA-Factory 1.1創(chuàng)建騰訊云服務(wù)器 注意: ChatGLM3-6b的大模型40多個G,購買騰訊

    2024年03月22日
    瀏覽(33)
  • llama-factory SFT系列教程 (一),大模型 API 部署與使用

    llama-factory SFT系列教程 (一),大模型 API 部署與使用

    本來今天沒有計劃學(xué) llama-factory ,逐步跟著github的文檔走,發(fā)現(xiàn)這框架確實挺方便,逐漸掌握了一些。 最近想使用 SFT 微調(diào)大模型,llama-factory 是使用非常廣泛的大模型微調(diào)框架; 基于 llama_factory 微調(diào) qwen/Qwen-7B,qwen/Qwen-7B-Chat 我使用的是 qwen/Qwen-7B ,如果追求對話效果 qwen/

    2024年04月16日
    瀏覽(44)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包