国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

大數(shù)據(jù)機(jī)器學(xué)習(xí)深度解讀決策樹算法:技術(shù)全解與案例實(shí)戰(zhàn)

這篇具有很好參考價(jià)值的文章主要介紹了大數(shù)據(jù)機(jī)器學(xué)習(xí)深度解讀決策樹算法:技術(shù)全解與案例實(shí)戰(zhàn)。希望對(duì)大家有所幫助。如果存在錯(cuò)誤或未考慮完全的地方,請(qǐng)大家不吝賜教,您也可以點(diǎn)擊"舉報(bào)違法"按鈕提交疑問。

大數(shù)據(jù)機(jī)器學(xué)習(xí)深度解讀決策樹算法:技術(shù)全解與案例實(shí)戰(zhàn)

本文深入探討了機(jī)器學(xué)習(xí)中的決策樹算法,從基礎(chǔ)概念到高級(jí)研究進(jìn)展,再到實(shí)戰(zhàn)案例應(yīng)用,全面解析了決策樹的理論及其在現(xiàn)實(shí)世界問題中的實(shí)際效能。通過技術(shù)細(xì)節(jié)和案例實(shí)踐,揭示了決策樹在提供可解釋預(yù)測(cè)中的獨(dú)特價(jià)值。

一、引言

決策樹算法是機(jī)器學(xué)習(xí)領(lǐng)域的基石之一,其強(qiáng)大的數(shù)據(jù)分割能力讓它在各種預(yù)測(cè)和分類問題中扮演著重要的角色。從它的名字便能窺見其工作原理的直觀性:就像一棵樹一樣,從根到葉子的每一分叉都是一個(gè)決策節(jié)點(diǎn),指引數(shù)據(jù)點(diǎn)最終歸類到相應(yīng)的葉節(jié)點(diǎn),或者說是最終的決策結(jié)果。

在現(xiàn)實(shí)世界中,決策樹的概念可以追溯到簡單而普遍的決策過程。例如,醫(yī)生在診斷病人時(shí),會(huì)根據(jù)一系列的檢查結(jié)果來逐步縮小疾病的范圍,這個(gè)過程可以被視作一種決策樹的實(shí)際應(yīng)用。從癥狀到測(cè)試,每一個(gè)節(jié)點(diǎn)都是決策點(diǎn),攜帶著是否進(jìn)一步檢查或是得出診斷的決策。

在機(jī)器學(xué)習(xí)的世界里,這種決策過程被數(shù)學(xué)化和算法化。我們不再是用肉眼觀察,而是讓計(jì)算機(jī)通過算法模擬這一過程。舉個(gè)例子,電子郵件過濾器就是決策樹應(yīng)用的一個(gè)經(jīng)典案例。它通過學(xué)習(xí)識(shí)別垃圾郵件和非垃圾郵件的特征,比如關(guān)鍵詞的出現(xiàn)頻率、發(fā)件人信譽(yù)等,電子郵件過濾器能夠自動(dòng)地將郵件分類為“垃圾郵件”或“正常郵件”。

在更廣泛的機(jī)器學(xué)習(xí)應(yīng)用領(lǐng)域,決策樹可以處理各種各樣的數(shù)據(jù),不論是數(shù)字還是分類數(shù)據(jù),它都能以其獨(dú)到的方式進(jìn)行分析。例如,在金融領(lǐng)域,決策樹能夠幫助評(píng)估和預(yù)測(cè)貸款違約的可能性;在電子商務(wù)中,它可以用來預(yù)測(cè)用戶的購買行為,甚至在更復(fù)雜的領(lǐng)域,比如生物信息學(xué)中,決策樹可以輔助從復(fù)雜的基因數(shù)據(jù)中發(fā)現(xiàn)疾病與特定基因之間的關(guān)聯(lián)。

通過引入機(jī)器學(xué)習(xí),我們讓決策樹這一概念超越了人類直覺的局限性,使它能處理遠(yuǎn)超人腦處理能力的數(shù)據(jù)量和復(fù)雜度。它們不僅能夠基于現(xiàn)有數(shù)據(jù)做出判斷,還能從數(shù)據(jù)中學(xué)習(xí),不斷優(yōu)化自身的決策規(guī)則,這是決策樹在現(xiàn)實(shí)世界中不可替代的意義。

決策樹之所以在機(jī)器學(xué)習(xí)中占有一席之地,還因?yàn)樗哪P涂山忉屝詮?qiáng),這在需要透明決策過程的領(lǐng)域尤為重要。與深度學(xué)習(xí)的黑盒模型相比,決策樹提供的決策路徑是清晰可追蹤的。每一次分支都基于數(shù)據(jù)特征的顯著性進(jìn)行選擇,這讓非專業(yè)人士也能夠理解模型的決策邏輯。

在本文中,我們將深入探討決策樹的核心技術(shù),從它的數(shù)學(xué)基礎(chǔ)到如何優(yōu)化算法以處理各類數(shù)據(jù)挑戰(zhàn),再到通過實(shí)際案例展示它們?nèi)绾谓鉀Q現(xiàn)實(shí)世界的問題。我們將走進(jìn)決策樹的世界,了解這一技術(shù)如何在機(jī)器學(xué)習(xí)的眾多領(lǐng)域中發(fā)揮著它的重要作用。

二、決策樹基礎(chǔ)

大數(shù)據(jù)機(jī)器學(xué)習(xí)深度解讀決策樹算法:技術(shù)全解與案例實(shí)戰(zhàn),機(jī)器學(xué)習(xí)與深度學(xué)習(xí),大數(shù)據(jù)人工智能,機(jī)器學(xué)習(xí),算法,大數(shù)據(jù),人工智能,決策樹,深度學(xué)習(xí),ai

決策樹,作為一種符號(hào)學(xué)習(xí)方法,將復(fù)雜的決策規(guī)則轉(zhuǎn)化為一系列簡單的比較問題,從而對(duì)數(shù)據(jù)進(jìn)行分類或回歸。它們通過遞歸分裂訓(xùn)練數(shù)據(jù)集,構(gòu)建一個(gè)樹狀的模型。

決策樹模型概述

在決策樹中,每個(gè)內(nèi)部節(jié)點(diǎn)代表一個(gè)特征上的測(cè)試,每個(gè)分支代表測(cè)試的結(jié)果,而每個(gè)葉節(jié)點(diǎn)代表最終的決策結(jié)果。決策樹的構(gòu)建始于根節(jié)點(diǎn),包含整個(gè)訓(xùn)練集,通過分裂成子節(jié)點(diǎn)的過程,逐漸學(xué)習(xí)數(shù)據(jù)中的規(guī)律。

想象一下,我們面前有一籃水果,目的是區(qū)分蘋果和橘子。一棵決策樹可能首先詢問:“這個(gè)水果的顏色是紅色嗎?”如果答案是肯定的,它可能會(huì)將這個(gè)水果分類為蘋果;否則,它會(huì)繼續(xù)詢問:“這個(gè)水果的質(zhì)感是光滑的嗎?”這樣的一系列問題最終導(dǎo)致分類的結(jié)果,這就是決策樹的工作方式。

構(gòu)建決策樹的關(guān)鍵概念

特征選擇
決策樹如何確定在每個(gè)節(jié)點(diǎn)上提出哪個(gè)問題?這就涉及到一個(gè)關(guān)鍵的概念——特征選擇。特征選擇是決定用哪個(gè)特征來分裂節(jié)點(diǎn)的過程,它對(duì)決策樹的性能有著至關(guān)重要的影響。主要的特征選擇方法包括:

信息增益:度量分裂前后信息不確定性的減少,也就是說,它尋找能夠最好地清理數(shù)據(jù)的特征。
增益率:調(diào)整信息增益,解決偏向于選擇擁有大量值的特征的問題。
基尼不純度:常用于CART算法,度量數(shù)據(jù)集的不純度,基尼不純度越小,數(shù)據(jù)集的純度越高。
假設(shè)我們要從一個(gè)包含蘋果和橘子的籃子中分類水果,信息增益會(huì)衡量按照顏色或按照質(zhì)地分裂數(shù)據(jù)所帶來的信息純度提升。如果顏色的信息增益更高,那么顏色就是該節(jié)點(diǎn)的最佳分裂特征。

決策樹的生成

樹的生成是通過遞歸分裂的方式進(jìn)行的。從根節(jié)點(diǎn)開始,使用特征選擇方法選擇最佳的分裂特征,創(chuàng)建分支,直到滿足某個(gè)停止條件,比如達(dá)到了設(shè)定的最大深度,或者節(jié)點(diǎn)中的樣本數(shù)量少于閾值。

舉一個(gè)現(xiàn)實(shí)生活中的例子,假如一個(gè)電信公司想要預(yù)測(cè)哪些客戶可能會(huì)流失。在構(gòu)建決策樹時(shí),它可能會(huì)首先考慮賬單金額,如果賬單金額大于平均值,那么進(jìn)一步考慮客戶的合同期限;如果合同期限短,那么客戶流失的可能性就更高。

決策樹的剪枝

為了防止過擬合——即模型對(duì)訓(xùn)練數(shù)據(jù)過于敏感,從而無法泛化到新的數(shù)據(jù)上——決策樹需要進(jìn)行剪枝。剪枝可以理解為對(duì)樹

進(jìn)行簡化的過程,包括預(yù)剪枝和后剪枝。預(yù)剪枝意味著在樹完全生成之前停止樹的生長;后剪枝則是在樹生成之后去掉某些分支。

例如,在預(yù)測(cè)客戶流失的決策樹中,如果我們發(fā)現(xiàn)分裂后每個(gè)節(jié)點(diǎn)只包含極少量的客戶,那么這可能是一個(gè)過擬合的信號(hào)。通過預(yù)剪枝或后剪枝,我們可以移除這些僅對(duì)訓(xùn)練數(shù)據(jù)有特定判斷能力的規(guī)則。

決策樹的基礎(chǔ)原理既直觀又深邃。它將復(fù)雜的決策過程簡化為易于理解的規(guī)則,并且通過學(xué)習(xí)數(shù)據(jù)中固有的模式,適用于各種機(jī)器學(xué)習(xí)任務(wù)。

三、算法研究進(jìn)階

大數(shù)據(jù)機(jī)器學(xué)習(xí)深度解讀決策樹算法:技術(shù)全解與案例實(shí)戰(zhàn),機(jī)器學(xué)習(xí)與深度學(xué)習(xí),大數(shù)據(jù)人工智能,機(jī)器學(xué)習(xí),算法,大數(shù)據(jù),人工智能,決策樹,深度學(xué)習(xí),ai
進(jìn)入到算法研究的進(jìn)階階段,我們將探討決策樹的深層次技術(shù)演進(jìn)和最新研究成果,以及如何將這些先進(jìn)的理念應(yīng)用于解決更復(fù)雜的問題。

提升樹和隨機(jī)森林

決策樹的強(qiáng)大之處不僅在于它們單獨(dú)的決策能力,而且還在于它們可以組合成更強(qiáng)大的模型,如提升樹(Boosted Trees)和隨機(jī)森林(Random Forests)。

提升樹(Boosted Trees)

提升樹是通過結(jié)合多個(gè)弱決策樹構(gòu)建的,每一棵樹都試圖糾正前一棵樹的錯(cuò)誤。使用梯度提升(Gradient Boosting)的方法可以系統(tǒng)地將新模型添加到已經(jīng)存在的模型集合中,從而逐步提升模型的準(zhǔn)確率。

以預(yù)測(cè)房價(jià)為例,我們可能首先使用一個(gè)簡單的決策樹來預(yù)測(cè)價(jià)格,然后第二棵樹會(huì)專注于第一棵樹預(yù)測(cè)錯(cuò)誤的部分,通過減少這些錯(cuò)誤來提升模型的性能,直到達(dá)到一定的準(zhǔn)確率或樹的數(shù)量。

隨機(jī)森林(Random Forests)

隨機(jī)森林通過創(chuàng)建多個(gè)獨(dú)立的決策樹,并讓它們對(duì)最終結(jié)果進(jìn)行投票,來提高決策樹的準(zhǔn)確性和魯棒性。每一棵樹都是在數(shù)據(jù)集的一個(gè)隨機(jī)子集上訓(xùn)練得到的,這種方法即提高了模型的泛化能力,也增加了結(jié)果的穩(wěn)定性。

設(shè)想一個(gè)信用評(píng)分的場景,單一決策樹可能會(huì)因?yàn)橛?xùn)練數(shù)據(jù)中的隨機(jī)波動(dòng)或噪聲而產(chǎn)生過度特定的規(guī)則。而隨機(jī)森林通過集成多個(gè)樹的決策來平均這些波動(dòng),生成更為穩(wěn)定和可靠的信用評(píng)分。

進(jìn)化算法與決策樹

研究人員還在探索如何使用進(jìn)化算法(Evolutionary Algorithms)來優(yōu)化決策樹的結(jié)構(gòu)和參數(shù)。進(jìn)化算法模擬生物進(jìn)化的過程,通過選擇、交叉和變異操作來優(yōu)化問題的解。

決策樹結(jié)構(gòu)的進(jìn)化

在實(shí)踐中,可能會(huì)將決策樹的每一部分——分裂規(guī)則、特征選擇、甚至是剪枝策略——看作是個(gè)體的基因。通過定義適應(yīng)度函數(shù)來評(píng)估樹的性能,進(jìn)化算法會(huì)不斷迭代,選擇出性能最佳的樹進(jìn)行繁衍,從而得到更加優(yōu)化的決策樹結(jié)構(gòu)。

例如,在電子商務(wù)推薦系統(tǒng)中,我們可以利用進(jìn)化算法來不斷進(jìn)化決策樹的結(jié)構(gòu),以提高推薦的準(zhǔn)確性。不同的樹結(jié)構(gòu)被視為不同的“物種”,經(jīng)過迭代的“自然選擇”,最適應(yīng)用戶行為模式的決策樹結(jié)構(gòu)會(huì)被保留下來。

多目標(biāo)決策樹優(yōu)化

在某些復(fù)雜的機(jī)器學(xué)習(xí)任務(wù)中,我們不僅僅想要優(yōu)化單一的性能指標(biāo),如準(zhǔn)確度,我們還可能關(guān)心模型的可解釋性、速

度或是占用的內(nèi)存大小。多目標(biāo)優(yōu)化(Multi-Objective Optimization)技術(shù)能夠在這些不同的指標(biāo)之間找到最佳的平衡。

應(yīng)用實(shí)例:財(cái)務(wù)風(fēng)險(xiǎn)評(píng)估

在財(cái)務(wù)風(fēng)險(xiǎn)評(píng)估中,我們需要一個(gè)既準(zhǔn)確又快速的模型來實(shí)時(shí)分析交易的風(fēng)險(xiǎn)。通過多目標(biāo)優(yōu)化,我們可以設(shè)計(jì)出既能快速執(zhí)行又有著較高準(zhǔn)確度的決策樹模型,以適應(yīng)高頻交易環(huán)境的需求。

通過這一節(jié)的深入探討,我們看到了決策樹不僅僅是一個(gè)簡單的分類或回歸工具,而是一個(gè)可擴(kuò)展的、能與其他算法相結(jié)合、并且能夠適應(yīng)復(fù)雜應(yīng)用需求的強(qiáng)大機(jī)器學(xué)習(xí)方法。

四、案例實(shí)戰(zhàn)

在本節(jié)中,我們將通過一個(gè)實(shí)戰(zhàn)案例來展示如何使用Python和PyTorch實(shí)現(xiàn)決策樹算法。我們將使用一個(gè)公開的銀行營銷數(shù)據(jù)集,目標(biāo)是預(yù)測(cè)客戶是否會(huì)訂閱定期存款。這是一個(gè)典型的二分類問題。

場景描述

假設(shè)我們是一家銀行,希望建立一個(gè)模型來預(yù)測(cè)哪些客戶更有可能訂閱定期存款。成功預(yù)測(cè)出這些客戶可以幫助銀行更精準(zhǔn)地進(jìn)行營銷,提高資源利用效率。

數(shù)據(jù)預(yù)處理

在開始之前,我們需要進(jìn)行數(shù)據(jù)預(yù)處理,包括加載數(shù)據(jù)、清洗數(shù)據(jù)、進(jìn)行特征編碼等。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

# 加載數(shù)據(jù)
data = pd.read_csv('bank.csv', sep=';')

# 數(shù)據(jù)預(yù)處理
# 將分類變量轉(zhuǎn)換為數(shù)值
labelencoder = LabelEncoder()
data['job'] = labelencoder.fit_transform(data['job'])
data['marital'] = labelencoder.fit_transform(data['marital'])
# ...對(duì)其他分類變量進(jìn)行編碼

# 定義特征集和標(biāo)簽
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values

# 劃分訓(xùn)練集和測(cè)試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

決策樹模型

下面,我們將使用DecisionTreeClassifier來訓(xùn)練模型,并對(duì)其進(jìn)行評(píng)估。

# 創(chuàng)建決策樹分類器實(shí)例
clf = DecisionTreeClassifier(criterion='entropy', random_state=42)

# 訓(xùn)練模型
clf.fit(X_train, y_train)

# 在測(cè)試集上進(jìn)行預(yù)測(cè)
y_pred = clf.predict(X_test)

# 評(píng)估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'模型準(zhǔn)確率: {accuracy:.2f}')

結(jié)果分析

這段代碼會(huì)輸出模型的準(zhǔn)確率,作為評(píng)估其性能的指標(biāo)。在現(xiàn)實(shí)應(yīng)用中,我們還會(huì)關(guān)注模型的召回率、精確率和F1分?jǐn)?shù),以及通過混淆矩陣來進(jìn)一步分析模型的性能。

在這個(gè)案例中,決策樹模型可以幫助銀行預(yù)測(cè)客戶是否會(huì)訂閱定期存款。通過準(zhǔn)確率的高低,我們可以了解到模型在解決實(shí)際問題上的有效性。

輸出展示

輸出將直接顯示模型在測(cè)試數(shù)據(jù)上的準(zhǔn)確率,為銀行提供了一個(gè)量化的工具來判斷營銷活動(dòng)的潛在效果。

實(shí)際操作中,模型的輸出還會(huì)進(jìn)一步轉(zhuǎn)換為決策支持,例如,通過模型預(yù)測(cè)的概率閾值來確定是否對(duì)某個(gè)客戶進(jìn)行營銷活動(dòng)。

總結(jié)

通過這個(gè)案例,我們展示了如何使用Python實(shí)現(xiàn)一個(gè)簡單的決策樹分類器,以及如何應(yīng)用它在實(shí)際的商業(yè)場景中進(jìn)行決策。這個(gè)實(shí)戰(zhàn)案例僅是決策樹應(yīng)用的冰山一角,決策樹的強(qiáng)大和靈活性使其在各種不同的領(lǐng)域都有廣泛的應(yīng)用。

五、總結(jié)

決策樹算法作為機(jī)器學(xué)習(xí)領(lǐng)域的基石之一,其直觀性和易于解釋的特性為其贏得了廣泛的應(yīng)用。本文從決策樹的基礎(chǔ)知識(shí)出發(fā),逐步深入到算法優(yōu)化、研究進(jìn)展,最終以一個(gè)實(shí)戰(zhàn)案例來集中展示其在實(shí)際問題中的應(yīng)用。

在技術(shù)的深度和復(fù)雜性不斷提高的今天,決策樹算法仍然保持著其獨(dú)特的魅力。它能夠與新興的機(jī)器學(xué)習(xí)技術(shù)如深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等相結(jié)合,創(chuàng)造出更為強(qiáng)大和適應(yīng)性強(qiáng)的模型。例如,通過集成學(xué)習(xí)中的隨機(jī)森林或提升方法,決策樹的預(yù)測(cè)性能得到了顯著提升,同時(shí)保留了模型的可解釋性。

決策樹的結(jié)構(gòu)使其成為理解數(shù)據(jù)屬性和做出預(yù)測(cè)決策的有力工具,尤其是在需要快速?zèng)Q策和解釋決策過程的場景中。這對(duì)于處在法規(guī)要求高透明度決策過程的行業(yè),如金融和醫(yī)療保健,尤為重要。

然而,決策樹算法并不是沒有挑戰(zhàn)。過擬合和處理高維數(shù)據(jù)時(shí)的效率問題是其兩大主要的技術(shù)難題。盡管存在這些挑戰(zhàn),但隨著算法研究的不斷深入,例如引入剪枝技術(shù)、特征選擇和多目標(biāo)優(yōu)化等方法,我們有望設(shè)計(jì)出更為高效和魯棒的決策樹模型。

在案例實(shí)戰(zhàn)中,我們利用Python和PyTorch展示了如何具體實(shí)現(xiàn)和應(yīng)用決策樹,這樣的實(shí)操經(jīng)驗(yàn)對(duì)于理解算法的實(shí)際效果和限制至關(guān)重要。

最后,可以預(yù)見,決策樹算法將繼續(xù)在人工智能的各個(gè)領(lǐng)域發(fā)揮其獨(dú)特的價(jià)值。其簡單、高效和易于解釋的特點(diǎn),將使其在可解釋的AI(XAI)領(lǐng)域發(fā)揮重要作用,助力人類構(gòu)建更加公正、透明和可信的機(jī)器學(xué)習(xí)系統(tǒng)。文章來源地址http://www.zghlxwxcb.cn/news/detail-758592.html

到了這里,關(guān)于大數(shù)據(jù)機(jī)器學(xué)習(xí)深度解讀決策樹算法:技術(shù)全解與案例實(shí)戰(zhàn)的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點(diǎn)僅代表作者本人,不代表本站立場。本站僅提供信息存儲(chǔ)空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請(qǐng)注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實(shí)不符,請(qǐng)點(diǎn)擊違法舉報(bào)進(jìn)行投訴反饋,一經(jīng)查實(shí),立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費(fèi)用

相關(guān)文章

  • 《機(jī)器學(xué)習(xí)核心技術(shù)》分類算法 - 決策樹

    《機(jī)器學(xué)習(xí)核心技術(shù)》分類算法 - 決策樹

    「作者主頁」: 士別三日wyx 「作者簡介」: CSDN top100、阿里云博客專家、華為云享專家、網(wǎng)絡(luò)安全領(lǐng)域優(yōu)質(zhì)創(chuàng)作者 「推薦專欄」: 小白零基礎(chǔ)《Python入門到精通》 決策樹是一種 「二叉樹形式」 的預(yù)測(cè)模型,每個(gè) 「節(jié)點(diǎn)」 對(duì)應(yīng)一個(gè) 「判斷條件」 , 「滿足」 上一個(gè)條件才

    2024年02月11日
    瀏覽(28)
  • 大數(shù)據(jù)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)——回歸模型評(píng)估

    大數(shù)據(jù)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)——回歸模型評(píng)估

    回歸模型的性能的評(píng)價(jià)指標(biāo)主要有:MAE(平均絕對(duì)誤差)、MSE(平均平方誤差)、RMSE(平方根誤差)、R2_score。但是當(dāng)量綱不同時(shí),RMSE、MAE、MSE難以衡量模型效果好壞,這就需要用到R2_score。 平均絕對(duì)誤差(MAE Mean Absolute Error) 是絕對(duì)誤差的平均值,能更好地反映預(yù)測(cè)值誤差的實(shí)際情況

    2024年02月04日
    瀏覽(22)
  • CUDA驅(qū)動(dòng)深度學(xué)習(xí)發(fā)展 - 技術(shù)全解與實(shí)戰(zhàn)

    CUDA驅(qū)動(dòng)深度學(xué)習(xí)發(fā)展 - 技術(shù)全解與實(shí)戰(zhàn)

    全面介紹CUDA與pytorch cuda實(shí)戰(zhàn) 關(guān)注TechLead,分享AI全維度知識(shí)。作者擁有10+年互聯(lián)網(wǎng)服務(wù)架構(gòu)、AI產(chǎn)品研發(fā)經(jīng)驗(yàn)、團(tuán)隊(duì)管理經(jīng)驗(yàn),同濟(jì)本復(fù)旦碩,復(fù)旦機(jī)器人智能實(shí)驗(yàn)室成員,阿里云認(rèn)證的資深架構(gòu)師,項(xiàng)目管理專業(yè)人士,上億營收AI產(chǎn)品研發(fā)負(fù)責(zé)人 CUDA(Compute Unified Device Arch

    2024年02月03日
    瀏覽(24)
  • 大數(shù)據(jù)機(jī)器學(xué)習(xí)-梯度下降:從技術(shù)到實(shí)戰(zhàn)的全面指南

    大數(shù)據(jù)機(jī)器學(xué)習(xí)-梯度下降:從技術(shù)到實(shí)戰(zhàn)的全面指南

    本文全面深入地探討了梯度下降及其變體——批量梯度下降、隨機(jī)梯度下降和小批量梯度下降的原理和應(yīng)用。通過數(shù)學(xué)表達(dá)式和基于PyTorch的代碼示例,本文旨在為讀者提供一種直觀且實(shí)用的視角,以理解這些優(yōu)化算法的工作原理和應(yīng)用場景。 梯度下降(Gradient Descent)是一種

    2024年02月04日
    瀏覽(23)
  • 機(jī)器學(xué)習(xí)算法 決策樹

    機(jī)器學(xué)習(xí)算法 決策樹

    決策樹(Decision Tree)是一種非參數(shù)的有監(jiān)督學(xué)習(xí)方法,它能夠從一系列有特征和標(biāo)簽的數(shù)據(jù)中總結(jié)出決策規(guī)則,并用樹狀圖的結(jié)構(gòu)來呈現(xiàn)這些規(guī)則,以解決分類和回歸問題。決策樹算法容易理解,適用各種數(shù)據(jù)。 決策樹算法的本質(zhì)是一種圖結(jié)構(gòu),我們只需要問一系列問題就

    2023年04月23日
    瀏覽(35)
  • 經(jīng)典機(jī)器學(xué)習(xí)算法——決策樹

    經(jīng)典機(jī)器學(xué)習(xí)算法——決策樹

    優(yōu)質(zhì)博文:IT-BLOG-CN 樹模型是機(jī)器學(xué)習(xí)中最常用的一類模型,包括隨機(jī)森林、AdaBoost、GBDT(XGBoost和Lightgbm)等,基本原理都是通過集成弱學(xué)習(xí)器的即式來進(jìn)一步提升準(zhǔn)確度。這里的弱學(xué)習(xí)器包括線性模型和決策樹模型,本期介紹的就是決策樹模型(DecisionTree)。 決策樹屬于有

    2024年04月29日
    瀏覽(24)
  • 機(jī)器學(xué)習(xí) | 決策樹算法

    機(jī)器學(xué)習(xí) | 決策樹算法

    1、樹模型 ????????決策樹:從根節(jié)點(diǎn)開始一步步走到葉子節(jié)點(diǎn)(決策)。所有的數(shù)據(jù)最終都會(huì)落到葉子節(jié)點(diǎn), 既可以做分類也可以做回歸。 ????????在分類問題中,表示基于特征對(duì)實(shí)例進(jìn)行分類的過程,可以認(rèn)為是if-then的集合,也可以認(rèn)為是定義在特征空間與類空間上

    2024年02月07日
    瀏覽(15)
  • 機(jī)器學(xué)習(xí)算法系列(四)-- 決策樹

    機(jī)器學(xué)習(xí)算法系列(四)-- 決策樹

    最經(jīng)典的機(jī)器學(xué)習(xí)模型之一,成樹型結(jié)構(gòu),決策樹的目的是為了產(chǎn)生一顆泛化能力強(qiáng),處理未見實(shí)例能力強(qiáng)的樹,通過特征判斷不斷分類,基本流程遵循“分而治之”的遞歸分類策略。 關(guān)鍵 就是選取對(duì)訓(xùn)練數(shù)據(jù)具有分類能力的特征,可提高決策樹學(xué)習(xí)的效率。通常特征選擇

    2023年04月23日
    瀏覽(26)
  • 【機(jī)器學(xué)習(xí)】十大算法之一 “決策樹”

    【機(jī)器學(xué)習(xí)】十大算法之一 “決策樹”

    作者主頁: 愛笑的男孩。的博客_CSDN博客-深度學(xué)習(xí),活動(dòng),python領(lǐng)域博主 愛笑的男孩。擅長深度學(xué)習(xí),活動(dòng),python,等方面的知識(shí),愛笑的男孩。關(guān)注算法,python,計(jì)算機(jī)視覺,圖像處理,深度學(xué)習(xí),pytorch,神經(jīng)網(wǎng)絡(luò),opencv領(lǐng)域. https://blog.csdn.net/Code_and516?type=blog 個(gè)人簡介:打工人。 持續(xù)分享

    2024年02月11日
    瀏覽(22)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請(qǐng)作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包