前言
是這樣的,之前接了一個(gè)金主的單子,他想在淘寶開個(gè)小魚零食的網(wǎng)店,想對(duì)目前這個(gè)市場上的商品做一些分析,本來手動(dòng)去做統(tǒng)計(jì)和分析也是可以的,這些信息都是對(duì)外展示的,只是手動(dòng)比較麻煩,所以想托我去幫個(gè)忙。
一、 項(xiàng)目要求:
具體的要求如下:
1.在淘寶搜索“小魚零食”,想知道前10頁搜索結(jié)果的所有商品的銷量和金額,按照他劃定好的價(jià)格區(qū)間來統(tǒng)計(jì)數(shù)量,給我劃分了如下的一張價(jià)格區(qū)間表:
2.這10頁搜索結(jié)果中,商家都是分布在全國的哪些位置?
3.這10頁的商品下面,用戶評(píng)論最多的是什么?
4.從這些搜索結(jié)果中,找出銷量最多的10家店鋪名字和店鋪鏈接。
從這些要求來看,其實(shí)這些需求也不難實(shí)現(xiàn),我們先來看一下項(xiàng)目的效果。
二、效果預(yù)覽
獲取到數(shù)據(jù)之后做了下分析,最終做成了柱狀圖,鼠標(biāo)移動(dòng)可以看出具體的商品數(shù)量。
在10~30元之間的商品最多,越往后越少,看來大多數(shù)的產(chǎn)品都是定位為低端市場。
然后我們?cè)賮砜匆幌氯珖碳业姆植记闆r:
可以看出,商家分布大多都是在沿海和長江中下游附近,其中以沿海地區(qū)最為密集。
然后再來看一下用戶都在商品下面評(píng)論了一些什么:
字最大的就表示出現(xiàn)次數(shù)最多,口感味道、包裝品質(zhì)、商品分量和保質(zhì)期是用戶評(píng)價(jià)最多的幾個(gè)方面,那么在產(chǎn)品包裝的時(shí)候可以從這幾個(gè)方面去做針對(duì)性闡述,解決大多數(shù)人比較關(guān)心的問題。
最后就是銷量前10的店鋪和鏈接了。
在拿到數(shù)據(jù)并做了分析之后,我也在想,如果這個(gè)東西是我來做的話,我能不能看出來什么東西?或許可以從價(jià)格上找到切入點(diǎn),或許可以從產(chǎn)品地理位置打個(gè)差異化,又或許可以以用戶為中心,由外而內(nèi)地做營銷。
越往深想,越覺得有門道,算了,對(duì)于小魚零食這一塊我是外行,不多想了。
三、爬蟲源碼
由于源碼分了幾個(gè)源文件,還是比較長的,所以這里就不跟大家一一講解了,懂爬蟲的人看幾遍就看懂了,不懂爬蟲的說再多也是云里霧里,等以后學(xué)會(huì)了爬蟲再來看就懂了。
測試淘寶爬蟲數(shù)據(jù) apikey secret文章來源:http://www.zghlxwxcb.cn/news/detail-755342.html
import csv
import os
import time
import wordcloud
from selenium import webdriver
from selenium.webdriver.common.by import By
def tongji():
prices = []
with open('前十頁銷量和金額.csv', 'r', encoding='utf-8', newline='') as f:
fieldnames = ['價(jià)格', '銷量', '店鋪位置']
reader = csv.DictReader(f, fieldnames=fieldnames)
for index, i in enumerate(reader):
if index != 0:
price = float(i['價(jià)格'].replace('¥', ''))
prices.append(price)
DATAS = {'<10': 0, '10~30': 0, '30~50': 0,
'50~70': 0, '70~90': 0, '90~110': 0,
'110~130': 0, '130~150': 0, '150~170': 0, '170~200': 0, }
for price in prices:
if price < 10:
DATAS['<10'] += 1
elif 10 <= price < 30:
DATAS['10~30'] += 1
elif 30 <= price < 50:
DATAS['30~50'] += 1
elif 50 <= price < 70:
DATAS['50~70'] += 1
elif 70 <= price < 90:
DATAS['70~90'] += 1
elif 90 <= price < 110:
DATAS['90~110'] += 1
elif 110 <= price < 130:
DATAS['110~130'] += 1
elif 130 <= price < 150:
DATAS['130~150'] += 1
elif 150 <= price < 170:
DATAS['150~170'] += 1
elif 170 <= price < 200:
DATAS['170~200'] += 1
for k, v in DATAS.items():
print(k, ':', v)
def get_the_top_10(url):
top_ten = []
# 獲取代理
ip = zhima1()[2][random.randint(0, 399)]
# 運(yùn)行quicker動(dòng)作(可以不用管)
os.system('"C:\Program Files\Quicker\QuickerStarter.exe" runaction:5e3abcd2-9271-47b6-8eaf-3e7c8f4935d8')
options = webdriver.ChromeOptions()
# 遠(yuǎn)程調(diào)試Chrome
options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
options.add_argument(f'--proxy-server={ip}')
driver = webdriver.Chrome(options=options)
# 隱式等待
driver.implicitly_wait(3)
# 打開網(wǎng)頁
driver.get(url)
# 點(diǎn)擊部分文字包含'銷量'的網(wǎng)頁元素
driver.find_element(By.PARTIAL_LINK_TEXT, '銷量').click()
time.sleep(1)
# 頁面滑動(dòng)到最下方
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
time.sleep(1)
# 查找元素
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
for index, item in enumerate(items):
if index == 10:
break
# 查找元素
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
paid_num_data = item.find_element(By.XPATH, './div[2]/div[1]/div[@class="deal-cnt"]').text
store_location = item.find_element(By.XPATH, './div[2]/div[3]/div[@class="location"]').text
store_href = item.find_element(By.XPATH, './div[2]/div[@class="row row-2 title"]/a').get_attribute(
'href').strip()
# 將數(shù)據(jù)添加到字典
top_ten.append(
{'價(jià)格': price,
'銷量': paid_num_data,
'店鋪位置': store_location,
'店鋪鏈接': store_href
})
for i in top_ten:
print(i)
def get_top_10_comments(url):
with open('排名前十評(píng)價(jià).txt', 'w+', encoding='utf-8') as f:
pass
# ip = ipidea()[1]
os.system('"C:\Program Files\Quicker\QuickerStarter.exe" runaction:5e3abcd2-9271-47b6-8eaf-3e7c8f4935d8')
options = webdriver.ChromeOptions()
options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
# options.add_argument(f'--proxy-server={ip}')
driver = webdriver.Chrome(options=options)
driver.implicitly_wait(3)
driver.get(url)
driver.find_element(By.PARTIAL_LINK_TEXT, '銷量').click()
time.sleep(1)
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
original_handle = driver.current_window_handle
item_hrefs = []
# 先獲取前十的鏈接
for index, item in enumerate(items):
if index == 10:
break
item_hrefs.append(
item.find_element(By.XPATH, './/div[2]/div[@class="row row-2 title"]/a').get_attribute('href').strip())
# 爬取前十每個(gè)商品評(píng)價(jià)
for item_href in item_hrefs:
# 打開新標(biāo)簽
# item_
driver.execute_script(f'window.open("{item_href}")')
# 切換過去
handles = driver.window_handles
driver.switch_to.window(handles[-1])
# 頁面向下滑動(dòng)一部分,直到讓評(píng)價(jià)那兩個(gè)字顯示出來
try:
driver.find_element(By.PARTIAL_LINK_TEXT, '評(píng)價(jià)').click()
except Exception as e1:
try:
x = driver.find_element(By.PARTIAL_LINK_TEXT, '評(píng)價(jià)').location_once_scrolled_into_view
driver.find_element(By.PARTIAL_LINK_TEXT, '評(píng)價(jià)').click()
except Exception as e2:
try:
# 先向下滑動(dòng)100,放置評(píng)價(jià)2個(gè)字沒顯示在屏幕內(nèi)
driver.execute_script('var q=document.documentElement.scrollTop=100')
x = driver.find_element(By.PARTIAL_LINK_TEXT, '評(píng)價(jià)').location_once_scrolled_into_view
except Exception as e3:
driver.find_element(By.XPATH, '/html/body/div[6]/div/div[3]/div[2]/div/div[2]/ul/li[2]/a').click()
time.sleep(1)
try:
trs = driver.find_elements(By.XPATH, '//div[@class="rate-grid"]/table/tbody/tr')
for index, tr in enumerate(trs):
if index == 0:
comments = tr.find_element(By.XPATH, './td[1]/div[1]/div/div').text.strip()
else:
try:
comments = tr.find_element(By.XPATH,
'./td[1]/div[1]/div[@class="tm-rate-fulltxt"]').text.strip()
except Exception as e:
comments = tr.find_element(By.XPATH,
'./td[1]/div[1]/div[@class="tm-rate-content"]/div[@class="tm-rate-fulltxt"]').text.strip()
with open('排名前十評(píng)價(jià).txt', 'a+', encoding='utf-8') as f:
f.write(comments + '\n')
print(comments)
except Exception as e:
lis = driver.find_elements(By.XPATH, '//div[@class="J_KgRate_MainReviews"]/div[@class="tb-revbd"]/ul/li')
for li in lis:
comments = li.find_element(By.XPATH, './div[2]/div/div[1]').text.strip()
with open('排名前十評(píng)價(jià).txt', 'a+', encoding='utf-8') as f:
f.write(comments + '\n')
print(comments)
def get_top_10_comments_wordcloud():
file = '排名前十評(píng)價(jià).txt'
f = open(file, encoding='utf-8')
txt = f.read()
f.close()
w = wordcloud.WordCloud(width=1000,
height=700,
background_color='white',
font_path='msyh.ttc')
# 創(chuàng)建詞云對(duì)象,并設(shè)置生成圖片的屬性
w.generate(txt)
name = file.replace('.txt', '')
w.to_file(name + '詞云.png')
os.startfile(name + '詞云.png')
def get_10_pages_datas():
with open('前十頁銷量和金額.csv', 'w+', encoding='utf-8', newline='') as f:
f.write('\ufeff')
fieldnames = ['價(jià)格', '銷量', '店鋪位置']
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
infos = []
options = webdriver.ChromeOptions()
options.add_experimental_option('debuggerAddress', '127.0.0.1:9222')
# options.add_argument(f'--proxy-server={ip}')
driver = webdriver.Chrome(options=options)
driver.implicitly_wait(3)
driver.get(url)
# driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
for index, item in enumerate(items):
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
paid_num_data = item.find_element(By.XPATH, './div[2]/div[1]/div[@class="deal-cnt"]').text
store_location = item.find_element(By.XPATH, './div[2]/div[3]/div[@class="location"]').text
infos.append(
{'價(jià)格': price,
'銷量': paid_num_data,
'店鋪位置': store_location})
try:
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
except Exception as e:
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
for i in range(9):
time.sleep(1)
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
element = driver.find_element(By.ID, 'mainsrp-itemlist').find_element(By.XPATH, './/div[@class="items"]')
items = element.find_elements(By.XPATH, './/div[@data-category="auctions"]')
for index, item in enumerate(items):
try:
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
except Exception:
time.sleep(1)
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
price = item.find_element(By.XPATH, './div[2]/div[1]/div[contains(@class,"price")]').text
paid_num_data = item.find_element(By.XPATH, './div[2]/div[1]/div[@class="deal-cnt"]').text
store_location = item.find_element(By.XPATH, './div[2]/div[3]/div[@class="location"]').text
infos.append(
{'價(jià)格': price,
'銷量': paid_num_data,
'店鋪位置': store_location})
try:
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
except Exception as e:
driver.execute_script('window.scrollTo(0,document.body.scrollHeight)')
driver.find_element(By.PARTIAL_LINK_TEXT, '下一').click()
# 一頁結(jié)束
for info in infos:
print(info)
with open('前十頁銷量和金額.csv', 'a+', encoding='utf-8', newline='') as f:
fieldnames = ['價(jià)格', '銷量', '店鋪位置']
writer = csv.DictWriter(f, fieldnames=fieldnames)
for info in infos:
writer.writerow(info)
if __name__ == '__main__':
url = 'https://s.taobao.com/search?q=%E5%B0%8F%E9%B1%BC%E9%9B%B6%E9%A3%9F&imgfile=&commend=all&ssid=s5-e&search_type=item&sourceId=tb.index&spm=a21bo.21814703.201856-taobao-item.1&ie=utf8&initiative_id=tbindexz_20170306&bcoffset=4&ntoffset=4&p4ppushleft=2%2C48&s=0'
# get_10_pages_datas()
# tongji()
# get_the_top_10(url)
# get_top_10_comments(url)
????get_top_10_comments_wordcloud()
通過上面的代碼,我們能獲取到想要獲取的數(shù)據(jù),然后再Bar和Geo進(jìn)行柱狀圖和地理位置分布展示,這兩塊大家可以去摸索一下。文章來源地址http://www.zghlxwxcb.cn/news/detail-755342.html
到了這里,關(guān)于Python 爬蟲實(shí)戰(zhàn)之爬淘寶商品并做數(shù)據(jù)分析的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!