模型訓(xùn)練
在同一個包下創(chuàng)建train.py
和model.py
,按照步驟先從數(shù)據(jù)處理,模型架構(gòu)搭建,訓(xùn)練測試,統(tǒng)計損失,如下面代碼所示
train.py
import torch.optim
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import NNN
# 1. 準備數(shù)據(jù)集
train_data = torchvision.datasets.CIFAR10("./data", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10("./data", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print(f"訓(xùn)練數(shù)據(jù)集的長度:{train_data_size}")
print(f"測試數(shù)據(jù)集的長度:{test_data_size}")
# 2. 利用DataLoader 加載數(shù)據(jù)集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 3. 搭建神經(jīng)網(wǎng)絡(luò)
# 引入model.py
nnn = NNN()
# 4. 創(chuàng)建損失函數(shù)loss
loss_fn = nn.CrossEntropyLoss() # 交叉熵
# 5. 優(yōu)化器
learning_rate = 0.01
optimizer = torch.optim.SGD(nnn.parameters(), lr=learning_rate) # 隨機梯度下降
# 6. 設(shè)置訓(xùn)練網(wǎng)絡(luò)的一些參數(shù)
total_train_step = 0 # 記錄訓(xùn)練次數(shù)
total_test_step = 0 # 訓(xùn)練測試次數(shù)
epoch = 10 # 訓(xùn)練輪數(shù)
# 補充tensorboard
writer = SummaryWriter("../logs")
# 開始訓(xùn)練
for i in range(epoch):
print(f"--------第{i+1}輪訓(xùn)練開始--------")
# 訓(xùn)練
nnn.train()
for data in train_dataloader:
imgs, targets = data
outputs = nnn(imgs)
loss = loss_fn(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print(f"訓(xùn)練次數(shù):{total_train_step}---loss:{loss.item()}")
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 測試
nnn.eval()
total_test_loss = 0 # 總體的誤差
total_accuracy = 0 # 總體的正確率
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = nnn(imgs)
loss = loss_fn(outputs, targets)
total_test_loss += loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print(f"整體測試集上的loss:{total_test_loss}")
print(f"整體測試集上的準確率:{total_accuracy/test_data_size}")
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("total_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step += 1
# 保存每一輪訓(xùn)練的模型
torch.save(nnn, f"nnn_{i+1}.pth")
print("模式已保存")
writer.close()
model.py
import torch
from torch import nn
# 搭建神經(jīng)網(wǎng)絡(luò)
class NNN(nn.Module):
def __init__(self):
super(NNN, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, stride=1, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 32, 5, stride=1, padding=2),
nn.MaxPool2d(kernel_size=2),
nn.Conv2d(32, 64, 5, stride=1, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
nnn = NNN()
input = torch.ones((64, 3, 32, 32))
output = nnn(input)
print(output.shape)
運行train.py
后可以通過啟動tensorboard進行查看我們的loss情況,損失是不斷下降的。
補充
argmax
函數(shù)的使用
我們模型預(yù)測處理的是概率,我們需要使用argmax
函數(shù)還得到預(yù)測的結(jié)果,就是選出概率最大的,上面測試準確率的計算使用到了。
簡單代碼示例:文章來源:http://www.zghlxwxcb.cn/news/detail-733294.html
import torch
# 模型輸出的概率
outputs = torch.tensor([[0.1, 0.3],
[0.7, 0.2]])
# 真實的分類
targets = torch.tensor([[1, 1]])
# 對概率進行預(yù)測
preds = outputs.argmax(1) # 1:橫向比較 0:豎向比較
# 預(yù)測與真實進行比較
print(preds == targets)
print((preds == targets).sum().item()) # 統(tǒng)計正確的個數(shù)
輸出:文章來源地址http://www.zghlxwxcb.cn/news/detail-733294.html
tensor([[ True, False]])
1
到了這里,關(guān)于Pytorch學習筆記(模型訓(xùn)練)的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!