0 前言
?? 優(yōu)質競賽項目系列,今天要分享的是
?? **基于深度學習貓狗分類 **
該項目較為新穎,適合作為競賽課題方向,學長非常推薦!
??學長這里給一個題目綜合評分(每項滿分5分)
- 難度系數(shù):3分
- 工作量:3分
- 創(chuàng)新點:3分
?? 更多資料, 項目分享:文章來源:http://www.zghlxwxcb.cn/news/detail-729301.html
https://gitee.com/dancheng-senior/postgraduate文章來源地址http://www.zghlxwxcb.cn/news/detail-729301.html
1 課題背景
要說到深度學習圖像分類的經(jīng)典案例之一,那就是貓狗大戰(zhàn)了。貓和狗在外觀上的差別還是挺明顯的,無論是體型、四肢、臉龐和毛發(fā)等等,
都是能通過肉眼很容易區(qū)分的。那么如何讓機器來識別貓和狗呢?這就需要使用卷積神經(jīng)網(wǎng)絡來實現(xiàn)了。
本項目的主要目標是開發(fā)一個可以識別貓狗圖像的系統(tǒng)。分析輸入圖像,然后預測輸出。實現(xiàn)的模型可以根據(jù)需要擴展到網(wǎng)站或任何移動設備。我們的主要目標是讓模型學習貓和狗的各種獨特特征。一旦模型的訓練完成,它將能夠區(qū)分貓和狗的圖像。
2 使用CNN進行貓狗分類
卷積神經(jīng)網(wǎng)絡 (CNN)
是一種算法,將圖像作為輸入,然后為圖像的所有方面分配權重和偏差,從而區(qū)分彼此。神經(jīng)網(wǎng)絡可以通過使用成批的圖像進行訓練,每個圖像都有一個標簽來識別圖像的真實性質(這里是貓或狗)。一個批次可以包含十分之幾到數(shù)百個圖像。
對于每張圖像,將網(wǎng)絡預測與相應的現(xiàn)有標簽進行比較,并評估整個批次的網(wǎng)絡預測與真實值之間的距離。然后,修改網(wǎng)絡參數(shù)以最小化距離,從而增加網(wǎng)絡的預測能力。類似地,每個批次的訓練過程都是類似的。
3 數(shù)據(jù)集處理
貓狗照片的數(shù)據(jù)集直接從kaggle官網(wǎng)下載即可,下載后解壓,這是我下載的數(shù)據(jù):
相關代碼
?
import os,shutil
original_data_dir = "G:/Data/Kaggle/dogcat/train"
base_dir = "G:/Data/Kaggle/dogcat/smallData"
if os.path.isdir(base_dir) == False:
os.mkdir(base_dir)
# 創(chuàng)建三個文件夾用來存放不同的數(shù)據(jù):train,validation,test
train_dir = os.path.join(base_dir,'train')
if os.path.isdir(train_dir) == False:
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir,'validation')
if os.path.isdir(validation_dir) == False:
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir,'test')
if os.path.isdir(test_dir) == False:
os.mkdir(test_dir)
# 在文件中:train,validation,test分別創(chuàng)建cats,dogs文件夾用來存放對應的數(shù)據(jù)
train_cats_dir = os.path.join(train_dir,'cats')
if os.path.isdir(train_cats_dir) == False:
os.mkdir(train_cats_dir)
train_dogs_dir = os.path.join(train_dir,'dogs')
if os.path.isdir(train_dogs_dir) == False:
os.mkdir(train_dogs_dir)
validation_cats_dir = os.path.join(validation_dir,'cats')
if os.path.isdir(validation_cats_dir) == False:
os.mkdir(validation_cats_dir)
validation_dogs_dir = os.path.join(validation_dir,'dogs')
if os.path.isdir(validation_dogs_dir) == False:
os.mkdir(validation_dogs_dir)
test_cats_dir = os.path.join(test_dir,'cats')
if os.path.isdir(test_cats_dir) == False:
os.mkdir(test_cats_dir)
test_dogs_dir = os.path.join(test_dir,'dogs')
if os.path.isdir(test_dogs_dir) == False:
os.mkdir(test_dogs_dir)
#將原始數(shù)據(jù)拷貝到對應的文件夾中 cat
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(original_data_dir,fname)
dst = os.path.join(train_cats_dir,fname)
shutil.copyfile(src,dst)
fnames = ['cat.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:
src = os.path.join(original_data_dir,fname)
dst = os.path.join(validation_cats_dir,fname)
shutil.copyfile(src,dst)
fnames = ['cat.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:
src = os.path.join(original_data_dir,fname)
dst = os.path.join(test_cats_dir,fname)
shutil.copyfile(src,dst)
#將原始數(shù)據(jù)拷貝到對應的文件夾中 dog
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
src = os.path.join(original_data_dir,fname)
dst = os.path.join(train_dogs_dir,fname)
shutil.copyfile(src,dst)
fnames = ['dog.{}.jpg'.format(i) for i in range(1000,1500)]
for fname in fnames:
src = os.path.join(original_data_dir,fname)
dst = os.path.join(validation_dogs_dir,fname)
shutil.copyfile(src,dst)
fnames = ['dog.{}.jpg'.format(i) for i in range(1500,2000)]
for fname in fnames:
src = os.path.join(original_data_dir,fname)
dst = os.path.join(test_dogs_dir,fname)
shutil.copyfile(src,dst)
print('train cat images:', len(os.listdir(train_cats_dir)))
print('train dog images:', len(os.listdir(train_dogs_dir)))
print('validation cat images:', len(os.listdir(validation_cats_dir)))
print('validation dog images:', len(os.listdir(validation_dogs_dir)))
print('test cat images:', len(os.listdir(test_cats_dir)))
print('test dog images:', len(os.listdir(test_dogs_dir)))
train cat images: 1000
train dog images: 1000
validation cat images: 500
validation dog images: 500
test cat images: 500
test dog images: 500
4 神經(jīng)網(wǎng)絡的編寫
cnn卷積神經(jīng)網(wǎng)絡的編寫如下,編寫卷積層、池化層和全連接層的代碼
?
conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')
flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)
5 Tensorflow計算圖的構建
然后,再搭建tensorflow的計算圖,定義占位符,計算損失函數(shù)、預測值和準確率等等
?
self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)
# 圖片輸入網(wǎng)絡中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 計算每一類的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)
最后的saver是要將訓練好的模型保存到本地。
6 模型的訓練和測試
然后編寫訓練部分的代碼,訓練步驟為1萬步
?
acc_list = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAIN_STEP):
train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)
eval_ops = [self.loss, self.acc, self.train_op]
eval_ops_results = sess.run(eval_ops, feed_dict={
self.x:train_data,
self.y:train_label,
self.keep_prob:0.7
})
loss_val, train_acc = eval_ops_results[0:2]
acc_list.append(train_acc)
if (i+1) % 100 == 0:
acc_mean = np.mean(acc_list)
print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
i+1,loss_val,train_acc,acc_mean
))
if (i+1) % 1000 == 0:
test_acc_list = []
for j in range(TEST_STEP):
test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
acc_val = sess.run([self.acc],feed_dict={
self.x:test_data,
self.y:test_label,
self.keep_prob:1.0
})
test_acc_list.append(acc_val)
print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
i+1, np.mean(test_acc_list)
))
# 保存訓練后的模型
os.makedirs(SAVE_PATH, exist_ok=True)
self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')
訓練結果如下:
訓練1萬步后模型測試的平均準確率有0.82。
7 預測效果
選取三張圖片測試
可見,模型準確率還是較高的。
8 最后
?? 更多資料, 項目分享:
https://gitee.com/dancheng-senior/postgraduate
到了這里,關于計算機競賽 深度學習貓狗分類 - python opencv cnn的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網(wǎng)!