「高等數(shù)學(xué)」雅可比矩陣和黑塞矩陣的異同
雅可比矩陣,Jacobi matrix 或者 Jacobian,是向量值函數(shù)( f : R n → R m f:\mathbb{R}^n \to \mathbb{R}^m f:Rn→Rm)的一階偏導(dǎo)數(shù)按行排列所得的矩陣。
黑塞矩陣,又叫海森矩陣,Hesse matrix,是多元函數(shù)( f : R n → R f:\mathbb{R}^n \to \mathbb{R} f:Rn→R)的二階偏導(dǎo)數(shù)組成的方陣。
1、雅可比矩陣 J m × n J_{m\times n} Jm×n?
雅可比矩陣通常是一個mxn的矩陣。
給出一個向量值函數(shù): h ( x ) = ( h 1 ( x ) , h 2 ( x ) , ? ? , h m ( x ) ) T h(\mathbf{x}) = (h_1(\mathbf{x}),h_2(\mathbf{x}),\cdots,h_m(\mathbf{x}))^T h(x)=(h1?(x),h2?(x),?,hm?(x))T
它的雅可比矩陣是:
J = [ ? h ? x 1 ? ? h ? x n ] = [ ? h 1 ? x 1 ? ? h 1 ? x n ? ? ? ? h m ? x 1 ? ? h m ? x n ] {\displaystyle \mathbf {J} ={\begin{bmatrix}{\dfrac {\partial \mathbf {h} }{\partial x_{1}}}&\cdots &{\dfrac {\partial \mathbf {h} }{\partial x_{n}}}\end{bmatrix}}={\begin{bmatrix}{\dfrac {\partial h_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial h_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial h_{m}}{\partial x_{n}}}\end{bmatrix}}} J=[?x1??h?????xn??h??]= ??x1??h1????x1??hm????????xn??h1????xn??hm??? ?
矩陣的每一行相當(dāng)于每個向量值函數(shù)的分量的梯度的轉(zhuǎn)置,或者叫一階偏導(dǎo)數(shù)按行(row)排列。
一個n元實值函數(shù)的梯度的雅可比矩陣:
J
=
D
[
?
f
(
x
)
]
=
[
?
2
f
?
x
1
2
?
2
f
?
x
2
?
?
x
1
?
?
2
f
?
x
n
?
?
x
1
?
2
f
?
x
1
?
?
x
2
?
2
f
?
x
2
2
?
?
2
f
?
x
n
?
?
x
2
?
?
?
?
?
2
f
?
x
1
?
?
x
n
?
2
f
?
x
2
?
?
x
n
?
?
2
f
?
x
n
2
]
?
{\displaystyle \mathbf {J} = D[\nabla f(\mathbf{x})] = {\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}\\ \\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}\\ \\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}&{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,}
J=D[?f(x)]=
??x12??2f??x1??x2??2f???x1??xn??2f???x2??x1??2f??x22??2f???x2??xn??2f????????xn??x1??2f??xn??x2??2f???xn2??2f??
?
2、黑塞矩陣 H n × n H_{n\times n} Hn×n?
黑塞矩陣一定是一個方陣。
二階混合偏導(dǎo)數(shù):
?
2
f
?
y
?
?
x
=
?
?
y
(
?
f
?
x
)
=
f
x
y
\frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = f_{xy}
?y?x?2f?=?y??(?x?f?)=fxy?
對于一個n元實值函數(shù)
f
(
x
)
f(\mathbf{x})
f(x),它的梯度為一個列向量:
?
f
(
x
)
=
(
f
x
1
(
x
)
,
f
x
2
(
x
)
,
?
?
,
f
x
n
(
x
)
)
T
\nabla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}),f_{x_2}(\mathbf{x}),\cdots,f_{x_n}(\mathbf{x}))^T
?f(x)=(fx1??(x),fx2??(x),?,fxn??(x))T
對其求二階偏導(dǎo)數(shù),并將偏導(dǎo)數(shù)按列(col)排列。
H
=
[
?
2
f
?
x
1
2
?
2
f
?
x
1
?
?
x
2
?
?
2
f
?
x
1
?
?
x
n
?
2
f
?
x
2
?
?
x
1
?
2
f
?
x
2
2
?
?
2
f
?
x
2
?
?
x
n
?
?
?
?
?
2
f
?
x
n
?
?
x
1
?
2
f
?
x
n
?
?
x
2
?
?
2
f
?
x
n
2
]
?
{\displaystyle \mathbf {H} ={\begin{bmatrix}{\frac {\partial ^{2}f}{\partial x_{1}^{2}}}&{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{1}\,\partial x_{n}}}\\\\{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{2}^{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{2}\,\partial x_{n}}}\\\\\vdots &\vdots &\ddots &\vdots \\\\{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{1}}}&{\frac {\partial ^{2}f}{\partial x_{n}\,\partial x_{2}}}&\cdots &{\frac {\partial ^{2}f}{\partial x_{n}^{2}}}\end{bmatrix}}\,}
H=
??x12??2f??x2??x1??2f???xn??x1??2f???x1??x2??2f??x22??2f???xn??x2??2f????????x1??xn??2f??x2??xn??2f???xn2??2f??
?
因此:
-
對于一個二階可微的n元實值函數(shù),它的黑塞矩陣的轉(zhuǎn)置??它的梯度的雅可比矩陣。
-
對于一個二階連續(xù)可微的n元實值函數(shù),其二階混合偏導(dǎo)數(shù): ? 2 f ? y ? ? x = ? 2 f ? x ? ? y \frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 f}{\partial x \, \partial y} ?y?x?2f?=?x?y?2f?。此時,其黑塞矩陣??它的梯度的雅可比矩陣。文章來源:http://www.zghlxwxcb.cn/news/detail-695841.html
-
在很多地方,遇到的都是二階連續(xù)可微的情況,因此有些地方對雅可比矩陣和黑塞矩陣不加以區(qū)分。文章來源地址http://www.zghlxwxcb.cn/news/detail-695841.html
到了這里,關(guān)于「高等數(shù)學(xué)」雅可比矩陣和黑塞矩陣的異同的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!