使用TensorFlow完成邏輯回歸
TensorFlow是一種開源的機(jī)器學(xué)習(xí)框架,由Google Brain團(tuán)隊(duì)于2015年開發(fā)。它被廣泛應(yīng)用于圖像和語音識別、自然語言處理、推薦系統(tǒng)等領(lǐng)域。
TensorFlow的核心是用于計(jì)算的數(shù)據(jù)流圖。在數(shù)據(jù)流圖中,節(jié)點(diǎn)表示數(shù)學(xué)操作,邊表示張量(多維數(shù)組)。將操作和數(shù)據(jù)組合在一起的數(shù)據(jù)流圖可以使 TensorFlow 對復(fù)雜的數(shù)學(xué)模型進(jìn)行優(yōu)化,同時(shí)支持分布式計(jì)算。
TensorFlow提供了Python,C++,Java,Go等多種編程語言的接口,讓開發(fā)者可以更便捷地使用TensorFlow構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型。此外,TensorFlow還具有豐富的工具和庫,包括TensorBoard可視化工具、TensorFlow Serving用于生產(chǎn)環(huán)境的模型服務(wù)、Keras高層封裝API等。
TensorFlow已經(jīng)發(fā)展出了許多優(yōu)秀的模型,如卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、生成對抗網(wǎng)絡(luò)等。這些模型已經(jīng)在許多領(lǐng)域取得了優(yōu)秀的成果,如圖像識別、語音識別、自然語言處理等。
除了開源的TensorFlow,Google還推出了基于TensorFlow的云端機(jī)器學(xué)習(xí)平臺Google Cloud ML,為用戶提供了更便捷的訓(xùn)練和部署機(jī)器學(xué)習(xí)模型的服務(wù)。
解決分類問題里最普遍的baseline model就是邏輯回歸,簡單同時(shí)可解釋性好,使得它大受歡迎,我們來用tensorflow完成這個(gè)模型的搭建。文章來源:http://www.zghlxwxcb.cn/news/detail-695275.html
1. 環(huán)境設(shè)定
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
2. 數(shù)據(jù)讀取
#使用tensorflow自帶的工具加載MNIST手寫數(shù)字集合
mnist = input_data.read_data_sets('./data/mnist', one_hot=True)
Extracting ./data/mnist/train-images-idx3-ubyte.gz
Extracting ./data/mnist/train-labels-idx1-ubyte.gz
Extracting ./data/mnist/t10k-images-idx3-ubyte.gz
Extracting ./data/mnist/t10k-labels-idx1-ubyte.gz
#查看一下數(shù)據(jù)維度
mnist.train.images.shape
(55000, 784)
#查看target維度
mnist.train.labels.shape
(55000, 10)
3. 準(zhǔn)備好placeholder
batch_size = 128
X = tf.placeholder(tf.float32, [batch_size, 784], name='X_placeholder')
Y = tf.placeholder(tf.int32, [batch_size, 10], name='Y_placeholder')
4. 準(zhǔn)備好參數(shù)/權(quán)重
w = tf.Variable(tf.random_normal(shape=[784, 10], stddev=0.01), name='weights')
b = tf.Variable(tf.zeros([1, 10]), name="bias")
logits = tf.matmul(X, w) + b
5. 計(jì)算多分類softmax的loss function
# 求交叉熵?fù)p失
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y, name='loss')
# 求平均
loss = tf.reduce_mean(entropy)
6. 準(zhǔn)備好optimizer
這里的最優(yōu)化用的是隨機(jī)梯度下降,我們可以選擇AdamOptimizer這樣的優(yōu)化器文章來源地址http://www.zghlxwxcb.cn/news/detail-695275.html
learning_rate = 0.01
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
7. 在session里執(zhí)行g(shù)raph里定義的運(yùn)算
#迭代總輪次
n_epochs = 30
with tf.Session() as sess:
# 在Tensorboard里可以看到圖的結(jié)構(gòu)
writer = tf.summary.FileWriter('../graphs/logistic_reg', sess.graph)
start_time = time.time()
sess.run(tf.global_variables_initializer())
n_batches = int(mnist.train.num_examples/batch_size)
for i in range(n_epochs): # 迭代這么多輪
total_loss = 0
for _ in range(n_batches):
X_batch, Y_batch = mnist.train.next_batch(batch_size)
_, loss_batch = sess.run([optimizer, loss], feed_dict={X: X_batch, Y:Y_batch})
total_loss += loss_batch
print('Average loss epoch {0}: {1}'.format(i, total_loss/n_batches))
print('Total time: {0} seconds'.format(time.time() - start_time))
print('Optimization Finished!')
# 測試模型
preds = tf.nn.softmax(logits)
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
n_batches = int(mnist.test.num_examples/batch_size)
total_correct_preds = 0
for i in range(n_batches):
X_batch, Y_batch = mnist.test.next_batch(batch_size)
accuracy_batch = sess.run([accuracy], feed_dict={X: X_batch, Y:Y_batch})
total_correct_preds += accuracy_batch[0]
print('Accuracy {0}'.format(total_correct_preds/mnist.test.num_examples))
writer.close()
Average loss epoch 0: 0.36748782022571785
Average loss epoch 1: 0.2978815356126198
Average loss epoch 2: 0.27840628396797845
Average loss epoch 3: 0.2783186247437706
Average loss epoch 4: 0.2783641471138923
Average loss epoch 5: 0.2750668214473413
Average loss epoch 6: 0.2687560408126502
Average loss epoch 7: 0.2713795114126239
Average loss epoch 8: 0.2657588795522154
Average loss epoch 9: 0.26322007090686916
Average loss epoch 10: 0.26289192279735646
Average loss epoch 11: 0.26248606019989873
Average loss epoch 12: 0.2604622903056356
Average loss epoch 13: 0.26015280702939403
Average loss epoch 14: 0.2581879366319496
Average loss epoch 15: 0.2590309207117085
Average loss epoch 16: 0.2630510463581219
Average loss epoch 17: 0.25501730025578767
Average loss epoch 18: 0.2547102673000945
Average loss epoch 19: 0.258298404375851
Average loss epoch 20: 0.2549241428330784
Average loss epoch 21: 0.2546788509283866
Average loss epoch 22: 0.259556887067837
Average loss epoch 23: 0.25428259843365575
Average loss epoch 24: 0.25442713139565676
Average loss epoch 25: 0.2553852511383159
Average loss epoch 26: 0.2503043229415978
Average loss epoch 27: 0.25468004046828596
Average loss epoch 28: 0.2552785321479633
Average loss epoch 29: 0.2506257003663859
Total time: 28.603315353393555 seconds
Optimization Finished!
Accuracy 0.9187
附:系列文章
序號 | 文章目錄 | 直達(dá)鏈接 |
---|---|---|
1 | 波士頓房價(jià)預(yù)測 | https://want595.blog.csdn.net/article/details/132181950 |
2 | 鳶尾花數(shù)據(jù)集分析 | https://want595.blog.csdn.net/article/details/132182057 |
3 | 特征處理 | https://want595.blog.csdn.net/article/details/132182165 |
4 | 交叉驗(yàn)證 | https://want595.blog.csdn.net/article/details/132182238 |
5 | 構(gòu)造神經(jīng)網(wǎng)絡(luò)示例 | https://want595.blog.csdn.net/article/details/132182341 |
6 | 使用TensorFlow完成線性回歸 | https://want595.blog.csdn.net/article/details/132182417 |
7 | 使用TensorFlow完成邏輯回歸 | https://want595.blog.csdn.net/article/details/132182496 |
8 | TensorBoard案例 | https://want595.blog.csdn.net/article/details/132182584 |
9 | 使用Keras完成線性回歸 | https://want595.blog.csdn.net/article/details/132182723 |
10 | 使用Keras完成邏輯回歸 | https://want595.blog.csdn.net/article/details/132182795 |
11 | 使用Keras預(yù)訓(xùn)練模型完成貓狗識別 | https://want595.blog.csdn.net/article/details/132243928 |
12 | 使用PyTorch訓(xùn)練模型 | https://want595.blog.csdn.net/article/details/132243989 |
13 | 使用Dropout抑制過擬合 | https://want595.blog.csdn.net/article/details/132244111 |
14 | 使用CNN完成MNIST手寫體識別(TensorFlow) | https://want595.blog.csdn.net/article/details/132244499 |
15 | 使用CNN完成MNIST手寫體識別(Keras) | https://want595.blog.csdn.net/article/details/132244552 |
16 | 使用CNN完成MNIST手寫體識別(PyTorch) | https://want595.blog.csdn.net/article/details/132244641 |
17 | 使用GAN生成手寫數(shù)字樣本 | https://want595.blog.csdn.net/article/details/132244764 |
18 | 自然語言處理 | https://want595.blog.csdn.net/article/details/132276591 |
到了這里,關(guān)于【深度學(xué)習(xí)】實(shí)驗(yàn)07 使用TensorFlow完成邏輯回歸的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!