所有的LeetCode題解索引,可以看這篇文章——【算法和數(shù)據(jù)結(jié)構(gòu)】LeetCode題解。
一、題目
二、解法
??思路分析:首先我們要知道后序遍歷數(shù)組的最后一個元素必然是根節(jié)點,然后根據(jù)根節(jié)點在中序遍歷數(shù)組中的位置進行劃分,得到根節(jié)點的左右子樹遍歷數(shù)組,以此遞歸。當(dāng)然這里有一個前提,遍歷數(shù)組的元素不得重復(fù),否則構(gòu)造的二叉樹不唯一。因此我們根據(jù)根節(jié)點的值找到中序遍歷數(shù)組中的根節(jié)點索引,以此劃分出左右區(qū)間,然后進行遞歸。
??程序如下:文章來源:http://www.zghlxwxcb.cn/news/detail-685703.html
class Solution {
public:
TreeNode* traversal(const vector<int>& inorder, int inorderBegin, int inorderEnd, const vector<int>& postorder, int postorderBegin, int postorderEnd) {
// 1、判斷是否為空數(shù)組,直接返回
if (inorderBegin == inorderEnd || postorderBegin == postorderEnd) return NULL;
// 2、后序遍歷數(shù)組最后一個元素,就是當(dāng)前的中間節(jié)點
int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);
// 3、葉子節(jié)點,后序數(shù)組只剩下一個元素,樹構(gòu)造完畢,返回
if (postorderBegin - postorderEnd == 1) return root;
// 4、找切割點
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break; // 這里注意二叉樹遍歷數(shù)組的值不能重復(fù),否則二叉樹不唯一,這里默認是唯一二叉樹,值不重復(fù)。
}
// 5、切割中序數(shù)組,得到 中序左數(shù)組和中序右數(shù)組
int leftinorderBegin = inorderBegin;
int leftinorderEnd = delimiterIndex;
int rightinorderBegin = delimiterIndex + 1;
int rightinorderEnd = inorder.size();
// 6、切割后序數(shù)組,得到 后序左數(shù)組和后序右數(shù)組
int leftpostorderBegin = postorderBegin;
int leftpostorderEnd = postorderBegin + delimiterIndex - inorderBegin;
// 右后序區(qū)間,左閉右開[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一個元素,已經(jīng)作為節(jié)點了
// 7、遞歸
root->left = traversal(inorder, leftinorderBegin, leftinorderEnd, postorder, leftpostorderBegin, leftpostorderEnd);
root->right = traversal(inorder, rightinorderBegin, rightinorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};
三、完整代碼
# include <iostream>
# include <vector>
# include <queue>
# include <string>
# include <algorithm>
# include <stack>
using namespace std;
// 樹節(jié)點定義
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
class Solution {
public:
TreeNode* traversal(const vector<int>& inorder, int inorderBegin, int inorderEnd, const vector<int>& postorder, int postorderBegin, int postorderEnd) {
// 1、判斷是否為空數(shù)組,直接返回
if (inorderBegin == inorderEnd || postorderBegin == postorderEnd) return NULL;
// 2、后序遍歷數(shù)組最后一個元素,就是當(dāng)前的中間節(jié)點
int rootValue = postorder[postorderEnd - 1];
TreeNode* root = new TreeNode(rootValue);
// 3、葉子節(jié)點,后序數(shù)組只剩下一個元素,樹構(gòu)造完畢,返回
if (postorderBegin - postorderEnd == 1) return root;
// 4、找切割點
int delimiterIndex;
for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break; // 這里注意二叉樹遍歷數(shù)組的值不能重復(fù),否則二叉樹不唯一,這里默認是唯一二叉樹,值不重復(fù)。
}
// 5、切割中序數(shù)組,得到 中序左數(shù)組和中序右數(shù)組
int leftinorderBegin = inorderBegin;
int leftinorderEnd = delimiterIndex;
int rightinorderBegin = delimiterIndex + 1;
int rightinorderEnd = inorder.size();
// 6、切割后序數(shù)組,得到 后序左數(shù)組和后序右數(shù)組
int leftpostorderBegin = postorderBegin;
int leftpostorderEnd = postorderBegin + delimiterIndex - inorderBegin;
// 右后序區(qū)間,左閉右開[rightPostorderBegin, rightPostorderEnd)
int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
int rightPostorderEnd = postorderEnd - 1; // 排除最后一個元素,已經(jīng)作為節(jié)點了
// 7、遞歸
root->left = traversal(inorder, leftinorderBegin, leftinorderEnd, postorder, leftpostorderBegin, leftpostorderEnd);
root->right = traversal(inorder, rightinorderBegin, rightinorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};
template<class T1, class T2>
void my_print2(T1& v, const string str) {
cout << str << endl;
for (class T1::iterator vit = v.begin(); vit < v.end(); ++vit) {
for (class T2::iterator it = (*vit).begin(); it < (*vit).end(); ++it) {
cout << *it << ' ';
}
cout << endl;
}
}
// 層序遍歷
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size(); // size必須固定, que.size()是不斷變化的
vector<int> vec;
for (int i = 0; i < size; ++i) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
int main()
{
//vector<int> inorder = {9, 3, 15, 20, 7};
//vector<int> postorder = { 9, 15, 7, 20, 3 };
vector<int> inorder = { 1, 2, 3};
vector<int> postorder = { 3, 2, 1};
Solution s;
TreeNode* root = s.buildTree(inorder, postorder);
vector<vector<int>> tree = levelOrder(root);
my_print2<vector<vector<int>>, vector<int>>(tree, "目標(biāo)樹:");
system("pause");
return 0;
}
end文章來源地址http://www.zghlxwxcb.cn/news/detail-685703.html
到了這里,關(guān)于【算法與數(shù)據(jù)結(jié)構(gòu)】106、LeetCode從中序與后序遍歷序列構(gòu)造二叉樹的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!