原理部分
1. 驅(qū)逐概念介紹
kubelet會定期監(jiān)控node的內(nèi)存,磁盤,文件系統(tǒng)等資源,當(dāng)達(dá)到指定的閾值后,就會先嘗試回收node級別的資源,比如當(dāng)磁盤資源不足時會刪除不同的image,如果仍然在閾值之上就會開始驅(qū)逐pod來回收資源。
2. 驅(qū)逐信號
kubelet定義了如下的驅(qū)逐信號,當(dāng)驅(qū)逐信號達(dá)到了驅(qū)逐閾值執(zhí)行驅(qū)逐流程
3. 驅(qū)逐閾值
驅(qū)逐閾值用來指定當(dāng)驅(qū)逐信號達(dá)到某個閾值后執(zhí)行驅(qū)逐流程,格式如下:[eviction-signal][operator][quantity],其中eviction-signa為上面定義的驅(qū)逐信號,operator為操作符,比如小于等,quantity為指定閾值數(shù)據(jù),可以為數(shù)字,也可以為百分比。
比如一個node有10G內(nèi)存,如果期望當(dāng)可用內(nèi)存小于1G觸發(fā)驅(qū)逐,可以定義閾值如下:memory.available<10%或者memory.available<1Gi
a. 軟驅(qū)逐閾值
軟驅(qū)逐閾值會指定一個grace period時間,只有達(dá)到閾值的時間超過了grace period才會執(zhí)行驅(qū)逐流程。
有如下三個相關(guān)參數(shù):
–eviction-soft: 指定驅(qū)逐閾值集合,比如memory.available<1.5Gi
–eviction-soft-grace-period:指定驅(qū)逐grace period時間集合,比如memory.available=1m30s
–eviction-max-pod-grace-period: 指定pod優(yōu)雅退出時間,要和上面的–eviction-soft-grace-period區(qū)分開,–eviction-soft-grace-period指的是
達(dá)到閾值持續(xù)多久后才執(zhí)行驅(qū)逐流程,而–eviction-max-pod-grace-period指的是驅(qū)逐pod后,pod的退出時間
b. 硬驅(qū)逐閾值
硬驅(qū)逐閾值只要達(dá)到了閾值就會執(zhí)行驅(qū)逐流程,有如下參數(shù)
–eviction-hard: 指定驅(qū)逐閾值集合
如果不指定–eviction-hard,則使用如下默認(rèn)值
//pkg/kubelet/apis/config/v1beta1/default_linux.go
// DefaultEvictionHard includes default options for hard eviction.
var DefaultEvictionHard = map[string]string{
"memory.available": "100Mi",
"nodefs.available": "10%",
"nodefs.inodesFree": "5%",
"imagefs.available": "15%",
}
驅(qū)逐的這些參數(shù)都可以在KubeletConfiguration文件中指定,只需要指定驅(qū)逐信號和對應(yīng)的數(shù)值即可,操作符默認(rèn)為小于,具體可參考官網(wǎng)
4. node健康狀況
當(dāng)達(dá)到軟驅(qū)逐(不用等到grace period)或者硬驅(qū)逐閾值后,kubelet就會向api-server報告node的健康狀況,反應(yīng)出node的壓力。
驅(qū)逐信號和node健康狀況的關(guān)系如下表
有些情況下,node健康狀況可能會在軟閾值上下波動,時而健康時而有壓力,導(dǎo)致錯誤的驅(qū)逐決定。為了防止這種情況,可以使用參數(shù)–eviction-pressure-transition-period來控制node健康狀況至少多久變化一次,默認(rèn)值為5分鐘
5. 驅(qū)逐pod選擇
如果kubelet回收node級別的資源后仍然在閾值之上,則需要驅(qū)逐用戶創(chuàng)建的pod。影響選擇pod進(jìn)行驅(qū)逐的因素如下:
a. 是否pod的資源使用超過了請求值
b. pod的優(yōu)先級
c. pod的資源使用值和請求值的比例
根據(jù)上面三個因素,kubelet排序后進(jìn)行驅(qū)逐pod的順序如下:
a. 資源使用值超過了請求值的BestEffort和Burstable級別的pod。根據(jù)他們的pod優(yōu)先級和超出請求值的多少進(jìn)行驅(qū)逐
b. 資源使用值小于請求值的Guaranteed和Burstable級別的pod。根據(jù)他們的pod優(yōu)先級進(jìn)行驅(qū)逐
6. 最小回收資源
有些情況下,驅(qū)逐pod只能回收很少的一部分資源,可能導(dǎo)致kubelet頻繁的執(zhí)行達(dá)到閾值/進(jìn)行驅(qū)逐的過程,為了防止這種情況,可以使用參數(shù)–eviction-minimum-reclaim為每種資源配置最小回收數(shù)值,當(dāng)kubelet執(zhí)行驅(qū)逐時,回收的資源會額外加上–eviction-minimum-reclaim指定的值。默認(rèn)值為0
舉例如下,當(dāng)nodefs.available達(dá)到驅(qū)逐閾值后,kubelet開始驅(qū)逐回收資源直到可用資源達(dá)到1G,此時還會繼續(xù)回收直到達(dá)到1.5G才會停止
apiVersion: kubelet.config.k8s.io/v1beta1
kind: KubeletConfiguration
evictionHard:
memory.available: "500Mi"
nodefs.available: "1Gi"
imagefs.available: "100Gi"
evictionMinimumReclaim:
memory.available: "0Mi"
nodefs.available: "500Mi"
imagefs.available: "2Gi"
7. KernelMemcgNotification
kubelet會啟動協(xié)程周期檢查是否達(dá)到驅(qū)逐閾值,如果有個很重要的pod內(nèi)存使用增長很快的話,即使達(dá)到內(nèi)存閾值了,kubelet也可能不能及時發(fā)現(xiàn),最終oomkill掉此pod,如果kubelet能及時發(fā)現(xiàn),就能驅(qū)逐其他低優(yōu)先級的pod釋放資源給這個高優(yōu)先級的pod使用。
此時可以使用參數(shù)–kernel-memcg-notification使能memcg機(jī)制,kubelet會使用epoll監(jiān)聽,當(dāng)達(dá)到閾值后,kubelet能很快得到通知,及時執(zhí)行驅(qū)逐流程。
源碼分析
1. 解析驅(qū)逐閾值配置
KubeletConfiguration文件中的驅(qū)逐閾值相關(guān)配置最終會保存到如下結(jié)構(gòu)體中,Thresholds用來保存軟驅(qū)逐閾值及其grace period,硬驅(qū)逐閾值。
// Config holds information about how eviction is configured.
type Config struct {
// PressureTransitionPeriod is duration the kubelet has to wait before transitioning out of a pressure condition.
PressureTransitionPeriod time.Duration
// Maximum allowed grace period (in seconds) to use when terminating pods in response to a soft eviction threshold being met.
MaxPodGracePeriodSeconds int64
// Thresholds define the set of conditions monitored to trigger eviction.
Thresholds []evictionapi.Threshold
// KernelMemcgNotification if true will integrate with the kernel memcg notification to determine if memory thresholds are crossed.
KernelMemcgNotification bool
// PodCgroupRoot is the cgroup which contains all pods.
PodCgroupRoot string
}
// Threshold defines a metric for when eviction should occur.
type Threshold struct {
// Signal defines the entity that was measured.
Signal Signal
// Operator represents a relationship of a signal to a value.
Operator ThresholdOperator
// Value is the threshold the resource is evaluated against.
Value ThresholdValue
// GracePeriod represents the amount of time that a threshold must be met before eviction is triggered.
GracePeriod time.Duration
// MinReclaim represents the minimum amount of resource to reclaim if the threshold is met.
MinReclaim *ThresholdValue
}
調(diào)用ParseThresholdConfig解析用戶配置
//pkg/kubelet/kubelet.go
func NewMainKubelet(...)
thresholds, err := eviction.ParseThresholdConfig(enforceNodeAllocatable, kubeCfg.EvictionHard, kubeCfg.EvictionSoft, kubeCfg.EvictionSoftGracePeriod, kubeCfg.EvictionMinimumReclaim)
evictionConfig := eviction.Config{
PressureTransitionPeriod: kubeCfg.EvictionPressureTransitionPeriod.Duration,
MaxPodGracePeriodSeconds: int64(kubeCfg.EvictionMaxPodGracePeriod),
Thresholds: thresholds,
KernelMemcgNotification: kernelMemcgNotification,
PodCgroupRoot: kubeDeps.ContainerManager.GetPodCgroupRoot(),
}
2. 創(chuàng)建evictionManager
調(diào)用eviction.NewManager創(chuàng)建evictionManager,klet.resourceAnalyzer用來獲取node和pod的統(tǒng)計信息,evictionConfig為用戶配置的驅(qū)逐閾值,killPodNow用來kill pod
//pkg/kubelet/kubelet.go
func NewMainKubelet(...)
// setup eviction manager
evictionManager, evictionAdmitHandler := eviction.NewManager(klet.resourceAnalyzer, evictionConfig, killPodNow(klet.podWorkers, kubeDeps.Recorder), klet.podManager.GetMirrorPodByPod, klet.imageManager, klet.containerGC, kubeDeps.Recorder, nodeRef, klet.clock)
klet.evictionManager = evictionManager
//將evictionManager添加到admitHandlers,創(chuàng)建pod時會調(diào)用evictionManager.Admit如果node有資源壓力則拒絕pod運(yùn)行在此node上
klet.admitHandlers.AddPodAdmitHandler(evictionAdmitHandler)
3. 啟動evictionManager
調(diào)用evictionManager的start函數(shù)啟動驅(qū)逐管理,kl.GetActivePods用來獲取運(yùn)行在本node上的active pod,kl.podResourcesAreReclaimed用來確認(rèn)pod的資源是否完全釋放,evictionMonitoringPeriod為沒有驅(qū)逐pod時的sleep時間
// Period for performing eviction monitoring.
// ensure this is kept in sync with internal cadvisor housekeeping.
evictionMonitoringPeriod = time.Second * 10
func initializeRuntimeDependentModules(...)
// eviction manager must start after cadvisor because it needs to know if the container runtime has a dedicated imagefs
kl.evictionManager.Start(kl.StatsProvider, kl.GetActivePods, kl.podResourcesAreReclaimed, evictionMonitoringPeriod)
如果指定了–kernel-memcg-notification,則啟動實時驅(qū)逐,同時也會創(chuàng)建協(xié)程啟動輪訓(xùn)驅(qū)逐
//pkg/kubelet/eviction/eviction_manager.go
// Start starts the control loop to observe and response to low compute resources.
func (m *managerImpl) Start(diskInfoProvider DiskInfoProvider, podFunc ActivePodsFunc, podCleanedUpFunc PodCleanedUpFunc, monitoringInterval time.Duration) {
thresholdHandler := func(message string) {
klog.InfoS(message)
m.synchronize(diskInfoProvider, podFunc)
}
//實時驅(qū)逐。如果指定了--kernel-memcg-notification,則使能memcg機(jī)制,如果達(dá)到指定的閾值,就能很快調(diào)用synchronize
if m.config.KernelMemcgNotification {
for _, threshold := range m.config.Thresholds {
if threshold.Signal == evictionapi.SignalMemoryAvailable || threshold.Signal == evictionapi.SignalAllocatableMemoryAvailable {
notifier, err := NewMemoryThresholdNotifier(threshold, m.config.PodCgroupRoot, &CgroupNotifierFactory{}, thresholdHandler)
if err != nil {
klog.InfoS("Eviction manager: failed to create memory threshold notifier", "err", err)
} else {
go notifier.Start()
m.thresholdNotifiers = append(m.thresholdNotifiers, notifier)
}
}
}
}
//輪訓(xùn)驅(qū)逐
// start the eviction manager monitoring
go func() {
for {
//如果synchronize返回值不為空,說明有pod被驅(qū)逐了,則調(diào)用waitForPodsCleanup等待pod的資源被釋放
if evictedPods := m.synchronize(diskInfoProvider, podFunc); evictedPods != nil {
klog.InfoS("Eviction manager: pods evicted, waiting for pod to be cleaned up", "pods", format.Pods(evictedPods))
m.waitForPodsCleanup(podCleanedUpFunc, evictedPods)
} else {//否則沒有pod被驅(qū)逐時,需要sleep 10s
time.Sleep(monitoringInterval)
}
}
}()
}
waitForPodsCleanup堵塞等待pod資源被回收,直到成功或者超時
func (m *managerImpl) waitForPodsCleanup(podCleanedUpFunc PodCleanedUpFunc, pods []*v1.Pod) {
//最多等待30s
timeout := m.clock.NewTimer(podCleanupTimeout)
defer timeout.Stop()
//每秒執(zhí)行一次
ticker := m.clock.NewTicker(podCleanupPollFreq)
defer ticker.Stop()
for {
select {
case <-timeout.C():
klog.InfoS("Eviction manager: timed out waiting for pods to be cleaned up", "pods", format.Pods(pods))
return
case <-ticker.C():
for i, pod := range pods {
//podCleanedUpFunc為pkg/kubelet/kubelet_pods.go:podResourcesAreReclaimed,用來判斷pod的資源是否已經(jīng)被回收,
//如果仍然被回收則返回false,跳出循環(huán)等待下次
if !podCleanedUpFunc(pod) {
break
}
if i == len(pods)-1 {
klog.InfoS("Eviction manager: pods successfully cleaned up", "pods", format.Pods(pods))
return
}
}
}
}
}
synchronize為evictionManager的核心函數(shù),實時驅(qū)逐和輪訓(xùn)驅(qū)逐都會調(diào)用它
// synchronize is the main control loop that enforces eviction thresholds.
// Returns the pod that was killed, or nil if no pod was killed.
func (m *managerImpl) synchronize(diskInfoProvider DiskInfoProvider, podFunc ActivePodsFunc) []*v1.Pod {
// if we have nothing to do, just return
thresholds := m.config.Thresholds
//如果配置的驅(qū)逐閾值集合為空,則返回。因為有默認(rèn)值的存在,肯定不會為空
if len(thresholds) == 0 && !utilfeature.DefaultFeatureGate.Enabled(features.LocalStorageCapacityIsolation) {
return nil
}
klog.V(3).InfoS("Eviction manager: synchronize housekeeping")
// build the ranking functions (if not yet known)
// TODO: have a function in cadvisor that lets us know if global housekeeping has completed
if m.dedicatedImageFs == nil {
hasImageFs, ok := diskInfoProvider.HasDedicatedImageFs()
if ok != nil {
return nil
}
m.dedicatedImageFs = &hasImageFs
//建立驅(qū)逐信號到排序函數(shù)的映射,比如對于SignalMemoryAvailable,使用rankMemoryPressure進(jìn)行排序
m.signalToRankFunc = buildSignalToRankFunc(hasImageFs)
//建立驅(qū)逐信號到node級別資源回收函數(shù)的映射
m.signalToNodeReclaimFuncs = buildSignalToNodeReclaimFuncs(m.imageGC, m.containerGC, hasImageFs)
}
//podFunc()為kl.GetActivePods用來獲取運(yùn)行在本node上的active pod
activePods := podFunc()
updateStats := true
//調(diào)用summaryProviderImpl.Get獲取node和pod統(tǒng)計信息
summary, err := m.summaryProvider.Get(updateStats)
if err != nil {
klog.ErrorS(err, "Eviction manager: failed to get summary stats")
return nil
}
//notifier相關(guān)的,暫時忽略
if m.clock.Since(m.thresholdsLastUpdated) > notifierRefreshInterval {
m.thresholdsLastUpdated = m.clock.Now()
for _, notifier := range m.thresholdNotifiers {
if err := notifier.UpdateThreshold(summary); err != nil {
klog.InfoS("Eviction manager: failed to update notifier", "notifier", notifier.Description(), "err", err)
}
}
}
//將獲取的node和pod統(tǒng)計信息summary轉(zhuǎn)換到observations,此為驅(qū)逐信號到signalObservation的map,signalObservation保存了驅(qū)逐信號
//的總?cè)萘?,可用值和獲取統(tǒng)計時的時間
// make observations and get a function to derive pod usage stats relative to those observations.
observations, statsFunc := makeSignalObservations(summary)
debugLogObservations("observations", observations)
//比較observations中的資源信息和配置的驅(qū)逐閾值thresholds,將達(dá)到閾值的thresholds返回,
//比如配置的驅(qū)逐閾值為memory.available: "500Mi"和nodefs.available: "1Gi",而observations中內(nèi)存可用為400Mi,
//可用nodefs為2Gi,則返回memory.available相關(guān)信息
// determine the set of thresholds met independent of grace period
thresholds = thresholdsMet(thresholds, observations, false)
debugLogThresholdsWithObservation("thresholds - ignoring grace period", thresholds, observations)
//thresholdsMet記錄的是上次達(dá)到驅(qū)逐閾值的信號
// determine the set of thresholds previously met that have not yet satisfied the associated min-reclaim
if len(m.thresholdsMet) > 0 {
//經(jīng)過上次的驅(qū)逐流程后,可能已經(jīng)成功回收資源,對上次達(dá)到驅(qū)逐閾值的信號再次進(jìn)行判斷是否降低到閾值之下,
//如果沒降低到閾值之下,需要將本次的thresholds和上次的m.thresholdsMet進(jìn)行合并。
//還有一種情況,對于軟驅(qū)逐來說,第一次達(dá)到閾值后可能還沒超過grace periods,則保存到m.thresholdsMet,下次走到這里時進(jìn)行合并,
//執(zhí)行后續(xù)流程,如果仍然沒超過grace periods則繼續(xù),直到超過grace periods指定的時間
thresholdsNotYetResolved := thresholdsMet(m.thresholdsMet, observations, true)
thresholds = mergeThresholds(thresholds, thresholdsNotYetResolved)
}
debugLogThresholdsWithObservation("thresholds - reclaim not satisfied", thresholds, observations)
//記錄驅(qū)逐信號第一次達(dá)到閾值的時間,目的是為了計算是否超過grace periods指定的時間
//thresholds是本次發(fā)現(xiàn)達(dá)到閾值的驅(qū)逐信號,m.thresholdsFirstObservedAt保存的驅(qū)逐信號是第一次
//達(dá)到閾值的時間
// track when a threshold was first observed
now := m.clock.Now()
thresholdsFirstObservedAt := thresholdsFirstObservedAt(thresholds, m.thresholdsFirstObservedAt, now)
//根據(jù)達(dá)到閾值的驅(qū)逐信號返回對應(yīng)的node健康狀況,比如達(dá)到內(nèi)存可用閾值了,則返回NodeMemoryPressure
// the set of node conditions that are triggered by currently observed thresholds
nodeConditions := nodeConditions(thresholds)
if len(nodeConditions) > 0 {
klog.V(3).InfoS("Eviction manager: node conditions - observed", "nodeCondition", nodeConditions)
}
//記錄不同node健康狀況上次出問題的時間,目的是為了計算是否超過了PressureTransitionPeriod指定的時間,防止node健康狀況出現(xiàn)波動
// track when a node condition was last observed
nodeConditionsLastObservedAt := nodeConditionsLastObservedAt(nodeConditions, m.nodeConditionsLastObservedAt, now)
//只要記錄的node健康狀況出問題的時間在PressureTransitionPeriod指定的時間內(nèi),則返回true,即認(rèn)為node健康狀況還是有問題,
//比如PressureTransitionPeriod為5分鐘,在第一分鐘時可用內(nèi)存信號達(dá)到了內(nèi)存閾值,設(shè)置node健康狀況為NodeMemoryPressure,
//第二分鐘即使可用內(nèi)存信號降到了內(nèi)存閾值之下,也不會將NodeMemoryPressure刪除,而是等到過了5分鐘之后,如果可用內(nèi)存信號仍然
//在內(nèi)存閾值之下,才會刪除NodeMemoryPressure,即需要保持NodeMemoryPressure狀態(tài)持續(xù)至少5分鐘,不過這段時間內(nèi)內(nèi)存如何變化。
// node conditions report true if it has been observed within the transition period window
nodeConditions = nodeConditionsObservedSince(nodeConditionsLastObservedAt, m.config.PressureTransitionPeriod, now)
if len(nodeConditions) > 0 {
klog.V(3).InfoS("Eviction manager: node conditions - transition period not met", "nodeCondition", nodeConditions)
}
//返回超過grace periods的驅(qū)逐信號,主要是針對軟驅(qū)逐來說,硬驅(qū)逐每次都會返回
// determine the set of thresholds we need to drive eviction behavior (i.e. all grace periods are met)
thresholds = thresholdsMetGracePeriod(thresholdsFirstObservedAt, now)
debugLogThresholdsWithObservation("thresholds - grace periods satisfied", thresholds, observations)
//保存重要的變量
// update internal state
m.Lock()
m.nodeConditions = nodeConditions
m.thresholdsFirstObservedAt = thresholdsFirstObservedAt
m.nodeConditionsLastObservedAt = nodeConditionsLastObservedAt
m.thresholdsMet = thresholds
// determine the set of thresholds whose stats have been updated since the last sync
thresholds = thresholdsUpdatedStats(thresholds, observations, m.lastObservations)
debugLogThresholdsWithObservation("thresholds - updated stats", thresholds, observations)
m.lastObservations = observations
m.Unlock()
// evict pods if there is a resource usage violation from local volume temporary storage
// If eviction happens in localStorageEviction function, skip the rest of eviction action
if utilfeature.DefaultFeatureGate.Enabled(features.LocalStorageCapacityIsolation) {
if evictedPods := m.localStorageEviction(activePods, statsFunc); len(evictedPods) > 0 {
return evictedPods
}
}
//如果為0,說明沒有驅(qū)逐信號達(dá)到閾值,即沒有資源壓力,返回即可
if len(thresholds) == 0 {
klog.V(3).InfoS("Eviction manager: no resources are starved")
return nil
}
//將驅(qū)逐信號進(jìn)行排序,將內(nèi)存驅(qū)逐信號排在前面
// rank the thresholds by eviction priority
sort.Sort(byEvictionPriority(thresholds))
//獲取第一個驅(qū)逐信號,上面剛排序過,最新驅(qū)逐的是內(nèi)存信號
thresholdToReclaim, resourceToReclaim, foundAny := getReclaimableThreshold(thresholds)
if !foundAny {
return nil
}
klog.InfoS("Eviction manager: attempting to reclaim", "resourceName", resourceToReclaim)
// record an event about the resources we are now attempting to reclaim via eviction
m.recorder.Eventf(m.nodeRef, v1.EventTypeWarning, "EvictionThresholdMet", "Attempting to reclaim %s", resourceToReclaim)
//首先查看是否有node層級的資源可回收,回收后,再次m.summaryProvider.Get獲取node和pod統(tǒng)計信息,和m.config.Thresholds進(jìn)行比較,
//如果沒有達(dá)到閾值的驅(qū)逐信號,則返回true,說明node層級的資源回收后,已經(jīng)沒有資源壓力。
//內(nèi)存驅(qū)逐信號不屬于node層級資源
// check if there are node-level resources we can reclaim to reduce pressure before evicting end-user pods.
if m.reclaimNodeLevelResources(thresholdToReclaim.Signal, resourceToReclaim) {
klog.InfoS("Eviction manager: able to reduce resource pressure without evicting pods.", "resourceName", resourceToReclaim)
return nil
}
klog.InfoS("Eviction manager: must evict pod(s) to reclaim", "resourceName", resourceToReclaim)
//根據(jù)驅(qū)逐信號獲取排序函數(shù),比如內(nèi)存驅(qū)逐信號對應(yīng)的排序函數(shù)為rankMemoryPressure
// rank the pods for eviction
rank, ok := m.signalToRankFunc[thresholdToReclaim.Signal]
if !ok {
klog.ErrorS(nil, "Eviction manager: no ranking function for signal", "threshold", thresholdToReclaim.Signal)
return nil
}
//沒有active的pod,返回
// the only candidates viable for eviction are those pods that had anything running.
if len(activePods) == 0 {
klog.ErrorS(nil, "Eviction manager: eviction thresholds have been met, but no pods are active to evict")
return nil
}
//對activePods進(jìn)行排序
// rank the running pods for eviction for the specified resource
rank(activePods, statsFunc)
klog.InfoS("Eviction manager: pods ranked for eviction", "pods", format.Pods(activePods))
//record age of metrics for met thresholds that we are using for evictions.
for _, t := range thresholds {
timeObserved := observations[t.Signal].time
if !timeObserved.IsZero() {
metrics.EvictionStatsAge.WithLabelValues(string(t.Signal)).Observe(metrics.SinceInSeconds(timeObserved.Time))
}
}
//遍歷activePods開始驅(qū)逐,每次最多驅(qū)逐一個pod。為什么還要循環(huán)呢?因為有些pod屬于Critical pod,這些pod不能驅(qū)逐
// we kill at most a single pod during each eviction interval
for i := range activePods {
pod := activePods[i]
gracePeriodOverride := int64(0)
//軟驅(qū)逐設(shè)置gracePeriodOverride為MaxPodGracePeriodSeconds,
//硬驅(qū)逐置gracePeriodOverride為0
if !isHardEvictionThreshold(thresholdToReclaim) {
gracePeriodOverride = m.config.MaxPodGracePeriodSeconds
}
message, annotations := evictionMessage(resourceToReclaim, pod, statsFunc)
//執(zhí)行驅(qū)逐,如果evictPod返回nil說明pod為Critical pod,返回非nil說明對pod進(jìn)行驅(qū)逐了,但不會管驅(qū)逐是否成功
if m.evictPod(pod, gracePeriodOverride, message, annotations) {
metrics.Evictions.WithLabelValues(string(thresholdToReclaim.Signal)).Inc()
return []*v1.Pod{pod}
}
}
klog.InfoS("Eviction manager: unable to evict any pods from the node")
return nil
}
evictPod對pod執(zhí)行驅(qū)逐,如果pod為Critical pod則直接返回nil
func (m *managerImpl) evictPod(pod *v1.Pod, gracePeriodOverride int64, evictMsg string, annotations map[string]string) bool {
// If the pod is marked as critical and static, and support for critical pod annotations is enabled,
// do not evict such pods. Static pods are not re-admitted after evictions.
// https://github.com/kubernetes/kubernetes/issues/40573 has more details.
if kubelettypes.IsCriticalPod(pod) {
klog.ErrorS(nil, "Eviction manager: cannot evict a critical pod", "pod", klog.KObj(pod))
return false
}
// record that we are evicting the pod
m.recorder.AnnotatedEventf(pod, annotations, v1.EventTypeWarning, Reason, evictMsg)
// this is a blocking call and should only return when the pod and its containers are killed.
klog.V(3).InfoS("Evicting pod", "pod", klog.KObj(pod), "podUID", pod.UID, "message", evictMsg)
//killPodFunc為pkg/kubelet/pod_workers.go:killPodNow
err := m.killPodFunc(pod, true, &gracePeriodOverride, func(status *v1.PodStatus) {
status.Phase = v1.PodFailed
status.Reason = Reason
status.Message = evictMsg
})
if err != nil {
klog.ErrorS(err, "Eviction manager: pod failed to evict", "pod", klog.KObj(pod))
} else {
klog.InfoS("Eviction manager: pod is evicted successfully", "pod", klog.KObj(pod))
}
return true
}
Critical pod的判斷方法
// IsCriticalPod returns true if pod's priority is greater than or equal to SystemCriticalPriority.
func IsCriticalPod(pod *v1.Pod) bool {
//pod的注釋kubernetes.io/config.source不為api,即不是從apiserver獲取的pod都為靜態(tài)pod
if IsStaticPod(pod) {
return true
}
//pod的注釋kubernetes.io/config.mirror不為空的pod為鏡像pod
if IsMirrorPod(pod) {
return true
}
//pod的優(yōu)先級不為空,且優(yōu)先級大于 2*1000000000
if pod.Spec.Priority != nil && IsCriticalPodBasedOnPriority(*pod.Spec.Priority) {
return true
}
return false
}
killPodNow調(diào)用pod_workers的UpdatePod kill pod,此函數(shù)為堵塞調(diào)用,或者返回成功,或者等timeout超時
//pkg/kubelet/pod_workers.go
// killPodNow returns a KillPodFunc that can be used to kill a pod.
// It is intended to be injected into other modules that need to kill a pod.
func killPodNow(podWorkers PodWorkers, recorder record.EventRecorder) eviction.KillPodFunc {
return func(pod *v1.Pod, isEvicted bool, gracePeriodOverride *int64, statusFn func(*v1.PodStatus)) error {
// determine the grace period to use when killing the pod
gracePeriod := int64(0)
if gracePeriodOverride != nil {
gracePeriod = *gracePeriodOverride
} else if pod.Spec.TerminationGracePeriodSeconds != nil {
gracePeriod = *pod.Spec.TerminationGracePeriodSeconds
}
// we timeout and return an error if we don't get a callback within a reasonable time.
// the default timeout is relative to the grace period (we settle on 10s to wait for kubelet->runtime traffic to complete in sigkill)
timeout := int64(gracePeriod + (gracePeriod / 2))
minTimeout := int64(10)
if timeout < minTimeout {
timeout = minTimeout
}
timeoutDuration := time.Duration(timeout) * time.Second
// open a channel we block against until we get a result
ch := make(chan struct{}, 1)
podWorkers.UpdatePod(UpdatePodOptions{
Pod: pod,
UpdateType: kubetypes.SyncPodKill, //更新類型為kill
KillPodOptions: &KillPodOptions{
CompletedCh: ch,
Evict: isEvicted,
PodStatusFunc: statusFn,
PodTerminationGracePeriodSecondsOverride: gracePeriodOverride,
},
})
// wait for either a response, or a timeout
select {
//堵塞channel等待,kill成功后會close此channel,這里返回nil
case <-ch:
return nil
case <-time.After(timeoutDuration): //超時了返回err
recorder.Eventf(pod, v1.EventTypeWarning, events.ExceededGracePeriod, "Container runtime did not kill the pod within specified grace period.")
return fmt.Errorf("timeout waiting to kill pod")
}
}
}
UpdatePod的調(diào)用鏈如下
UpdatePod-> managePodLoop -> syncTerminatingPod -> killPod -> containerRuntime.KillPod
4. nodeConditions的作用
有如下兩個作用
a. 如果node健康狀況出問題就會上報到kube-apiserver,代碼如下
func (kl *Kubelet) defaultNodeStatusFuncs() []func(*v1.Node) error
setters = append(setters,
//上傳MemoryPressure
nodestatus.MemoryPressureCondition(kl.clock.Now, kl.evictionManager.IsUnderMemoryPressure, kl.recordNodeStatusEvent),
//上傳DiskPressure
nodestatus.DiskPressureCondition(kl.clock.Now, kl.evictionManager.IsUnderDiskPressure, kl.recordNodeStatusEvent),
//上傳PIDPressure
nodestatus.PIDPressureCondition(kl.clock.Now, kl.evictionManager.IsUnderPIDPressure, kl.recordNodeStatusEvent),
)
如果m.nodeConditions包含NodeMemoryPressure說明有當(dāng)前可用內(nèi)存超過了內(nèi)存驅(qū)逐信號的閾值
// IsUnderMemoryPressure returns true if the node is under memory pressure.
func (m *managerImpl) IsUnderMemoryPressure() bool {
m.RLock()
defer m.RUnlock()
return hasNodeCondition(m.nodeConditions, v1.NodeMemoryPressure)
}
會有兩個表現(xiàn),一個是node污點增加了node.kubernetes.io/memory-pressure:NoSchedule,另一個是node的Conditions也能看到MemoryPressure,可使用kubectl describe node master查看
root@master:~# kubectl describe node master
...
Taints: node.kubernetes.io/memory-pressure:NoSchedule
Unschedulable: false
Lease:
HolderIdentity: master
AcquireTime: <unset>
RenewTime: Sat, 10 Dec 2022 10:23:38 +0000
Conditions:
Type Status LastHeartbeatTime LastTransitionTime Reason Message
---- ------ ----------------- ------------------ ------ -------
MemoryPressure True Sat, 10 Dec 2022 10:22:06 +0000 Sat, 10 Dec 2022 10:22:06 +0000 KubeletHasInsufficientMemory kubelet has insufficient memory available
node有了node.kubernetes.io/memory-pressure:NoSchedule污點后,還可能會影響新pod的調(diào)度,在Filter擴(kuò)展點TaintToleration插件會檢查污點
// Filter invoked at the filter extension point.
func (pl *TaintToleration) Filter(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeInfo *framework.NodeInfo) *framework.Status {
if nodeInfo == nil || nodeInfo.Node() == nil {
return framework.AsStatus(fmt.Errorf("invalid nodeInfo"))
}
filterPredicate := func(t *v1.Taint) bool {
// PodToleratesNodeTaints is only interested in NoSchedule and NoExecute taints.
return t.Effect == v1.TaintEffectNoSchedule || t.Effect == v1.TaintEffectNoExecute
}
taint, isUntolerated := v1helper.FindMatchingUntoleratedTaint(nodeInfo.Node().Spec.Taints, pod.Spec.Tolerations, filterPredicate)
if !isUntolerated {
return nil
}
errReason := fmt.Sprintf("node(s) had taint {%s: %s}, that the pod didn't tolerate",
taint.Key, taint.Value)
return framework.NewStatus(framework.UnschedulableAndUnresolvable, errReason)
}
如果新創(chuàng)建的pod沒有聲明容忍memory-pressure污點,會有如下報錯,導(dǎo)致pod調(diào)度失敗
I1210 12:43:04.147715 92808 scheduler.go:351] "Unable to schedule pod; no fit; waiting" pod="default/nginx-demo3-574cdd99c7-lwk9x" err="0/2 nodes are available: 1 node(s) had untolerated taint {node.kubernetes.io/memory-pressure: }, 1 node(s) had untolerated taint {node.kubernetes.io/unreachable: }. preemption: 0/2 nodes are available: 2 Preemption is not helpful for scheduling."
b. 即使新建pod能調(diào)度成功,在目標(biāo)node上也需要經(jīng)過canAdmitPod檢查后才能允許此pod運(yùn)行在此node上,調(diào)用鏈如下
HandlePodAdditions -> canAdmitPod -> podAdmitHandler.Admit
evictionManager的Admit會檢查node健康狀態(tài)m.nodeConditions,如果為空說明沒有資源壓力,可直接返回true,如果是CriticalPod也返回true,如果只有內(nèi)存壓力,會根據(jù)pod的qos級別進(jìn)行區(qū)分,如果不是besteffort的pod也返回true,是besteffort的pod如果可以容忍內(nèi)存壓力也可以,但如果不是內(nèi)存壓力就返回false,即pod不能運(yùn)行在此node上文章來源:http://www.zghlxwxcb.cn/news/detail-660732.html
// Admit rejects a pod if its not safe to admit for node stability.
func (m *managerImpl) Admit(attrs *lifecycle.PodAdmitAttributes) lifecycle.PodAdmitResult {
m.RLock()
defer m.RUnlock()
//node健康狀態(tài)集合為空,說明沒有資源壓力,可直接返回true
if len(m.nodeConditions) == 0 {
return lifecycle.PodAdmitResult{Admit: true}
}
//CriticalPod也返回true
// Admit Critical pods even under resource pressure since they are required for system stability.
// https://github.com/kubernetes/kubernetes/issues/40573 has more details.
if kubelettypes.IsCriticalPod(attrs.Pod) {
return lifecycle.PodAdmitResult{Admit: true}
}
//有且只有內(nèi)存壓力
// Conditions other than memory pressure reject all pods
nodeOnlyHasMemoryPressureCondition := hasNodeCondition(m.nodeConditions, v1.NodeMemoryPressure) && len(m.nodeConditions) == 1
if nodeOnlyHasMemoryPressureCondition {
//獲取pod的qos級別
notBestEffort := v1.PodQOSBestEffort != v1qos.GetPodQOS(attrs.Pod)
//非BestEffort的pod返回true
if notBestEffort {
return lifecycle.PodAdmitResult{Admit: true}
}
//如果能容忍內(nèi)存壓力也返回true
// When node has memory pressure, check BestEffort Pod's toleration:
// admit it if tolerates memory pressure taint, fail for other tolerations, e.g. DiskPressure.
if v1helper.TolerationsTolerateTaint(attrs.Pod.Spec.Tolerations, &v1.Taint{
Key: v1.TaintNodeMemoryPressure,
Effect: v1.TaintEffectNoSchedule,
}) {
return lifecycle.PodAdmitResult{Admit: true}
}
}
//其他情況均返回false
// reject pods when under memory pressure (if pod is best effort), or if under disk pressure.
klog.InfoS("Failed to admit pod to node", "pod", klog.KObj(attrs.Pod), "nodeCondition", m.nodeConditions)
return lifecycle.PodAdmitResult{
Admit: false,
Reason: Reason,
Message: fmt.Sprintf(nodeConditionMessageFmt, m.nodeConditions),
}
}
參考
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/#eviction-thresholds
https://github.com/kubernetes/design-proposals-archive/blob/main/node/kubelet-eviction.md文章來源地址http://www.zghlxwxcb.cn/news/detail-660732.html
到了這里,關(guān)于k8s 驅(qū)逐eviction機(jī)制源碼分析的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!