回歸預(yù)測 | MATLAB實(shí)現(xiàn)IPSO-SVM改進(jìn)粒子群優(yōu)化算法優(yōu)化支持向量機(jī)多輸入單輸出回歸預(yù)測(多指標(biāo),多圖)
效果一覽
基本介紹
回歸預(yù)測 | MATLAB實(shí)現(xiàn)IPSO-SVM改進(jìn)粒子群優(yōu)化算法優(yōu)化支持向量機(jī)多輸入單輸出回歸預(yù)測(多指標(biāo),多圖);
多指標(biāo)評(píng)價(jià),代碼質(zhì)量極高;excel數(shù)據(jù),方便替換,運(yùn)行環(huán)境2018及以上。文章來源:http://www.zghlxwxcb.cn/news/detail-660393.html
程序設(shè)計(jì)
- 完整源碼和數(shù)據(jù)獲取方式:私信回復(fù)MATLAB實(shí)現(xiàn)IPSO-SVM改進(jìn)粒子群優(yōu)化算法優(yōu)化支持向量機(jī)多輸入單輸出回歸預(yù)測(多指標(biāo),多圖)。
%% 清空環(huán)境變量
warning off % 關(guān)閉報(bào)警信息
close all % 關(guān)閉開啟的圖窗
clear % 清空變量
clc % 清空命令行
%% 導(dǎo)入數(shù)據(jù)
res = xlsread('data.xlsx');
%% 劃分訓(xùn)練集和測試集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%% 數(shù)據(jù)歸一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 仿真測試
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);
%% 數(shù)據(jù)反歸一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根誤差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);
%% 相關(guān)指標(biāo)計(jì)算
% 決定系數(shù) R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;
disp(['訓(xùn)練集數(shù)據(jù)的R2為:', num2str(R1)])
disp(['測試集數(shù)據(jù)的R2為:', num2str(R2)])
% 平均絕對(duì)誤差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;
disp(['訓(xùn)練集數(shù)據(jù)的MAE為:', num2str(mae1)])
disp(['測試集數(shù)據(jù)的MAE為:', num2str(mae2)])
% 平均相對(duì)誤差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;
disp(['訓(xùn)練集數(shù)據(jù)的MBE為:', num2str(mbe1)])
disp(['測試集數(shù)據(jù)的MBE為:', num2str(mbe2)])
參考資料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718文章來源地址http://www.zghlxwxcb.cn/news/detail-660393.html
到了這里,關(guān)于回歸預(yù)測 | MATLAB實(shí)現(xiàn)IPSO-SVM改進(jìn)粒子群優(yōu)化算法優(yōu)化支持向量機(jī)多輸入單輸出回歸預(yù)測(多指標(biāo),多圖)的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!