分類預(yù)測 | MATLAB實現(xiàn)DBN-SVM深度置信網(wǎng)絡(luò)結(jié)合支持向量機多輸入分類預(yù)測
預(yù)測效果
基本介紹
1.分類預(yù)測 | MATLAB實現(xiàn)DBN-SVM深度置信網(wǎng)絡(luò)結(jié)合支持向量機多輸入分類預(yù)測
2.代碼說明:要求于Matlab 2021版及以上版本。文章來源:http://www.zghlxwxcb.cn/news/detail-657600.html
程序設(shè)計
- 完整程序和數(shù)據(jù)獲取方式1:同等價值程序兌換;
- 完整程序和數(shù)據(jù)獲取方式2:私信博主回復(fù) MATLAB實現(xiàn)DBN-SVM深度置信網(wǎng)絡(luò)結(jié)合支持向量機多輸入分類預(yù)測獲取。
%% 劃分訓(xùn)練集和測試集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 數(shù)據(jù)歸一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
dbn = dbnsetup(dbn, p_train, opts); % 建立模型
dbn = dbntrain(dbn, p_train, opts); % 訓(xùn)練模型
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 訓(xùn)練權(quán)重移植,添加輸出層
nn = dbnunfoldtonn(dbn, num_class);
%% 反向調(diào)整網(wǎng)絡(luò)
opts.numepochs = 576; % 反向微調(diào)次數(shù)
opts.batchsize = M; % 每次反向微調(diào)樣本數(shù) 需滿足:(M / batchsize = 整數(shù))
nn.activation_function = 'sigm'; % 激活函數(shù)
nn.learningRate = 2.9189; % 學(xué)習(xí)率
nn.momentum = 0.5; % 動量參數(shù)
nn.scaling_learningRate = 1; % 學(xué)習(xí)率的比例因子
[nn, loss, accu] = nntrain(nn, p_train, t_train, opts); % 訓(xùn)練
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 仿真預(yù)測
T_sim1 = nnpredict(nn, p_train);
T_sim2 = nnpredict(nn, p_test );
%% 性能評價
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
https://blog.csdn.net/kjm13182345320/article/details/131174983
版權(quán)聲明:本文為CSDN博主「機器學(xué)習(xí)之心」的原創(chuàng)文章,遵循CC 4.0 BY-SA版權(quán)協(xié)議,轉(zhuǎn)載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/kjm13182345320/article/details/130462492
參考資料
[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501文章來源地址http://www.zghlxwxcb.cn/news/detail-657600.html
到了這里,關(guān)于分類預(yù)測 | MATLAB實現(xiàn)DBN-SVM深度置信網(wǎng)絡(luò)結(jié)合支持向量機多輸入分類預(yù)測的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!