多輸入多輸出 | MATLAB實現BiLSTM雙向長短期記憶神經網絡多輸入多輸出預測
預測效果
基本介紹
MATLAB實現BiLSTM雙向長短期記憶神經網絡多輸入多輸出預測,數據為多輸入多輸出預測數據,輸入10個特征,輸出3個變量,程序亂碼是由于版本不一致導致,可以用記事本打開復制到你的文件,運行環(huán)境MATLAB2018b及以上。命令窗口輸出MAE和R2,可在下載區(qū)獲取數據和程序內容。
程序設計
- 完整程序和數據下載方式(資源處直接下載):MATLAB實現BiLSTM雙向長短期記憶神經網絡多輸入多輸出預測
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
layers = [ ...
sequenceInputLayer(numFeatures)
fullyConnectedLayer(numResponses)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',250, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'ExecutionEnvironment','cpu', ...
'Verbose',0, ...
'Plots','training-progress');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
net = trainNetwork(XTrain,YTrain,layers,options);
dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
numTimeStepsTest = numel(XTest);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
往期精彩
MATLAB實現RBF徑向基神經網絡多輸入多輸出預測
MATLAB實現BP神經網絡多輸入多輸出預測
MATLAB實現DNN神經網絡多輸入多輸出預測
MATLAB實現GRNN廣義回歸神經網絡多輸入多輸出預測
MATLAB實現GRU門控循環(huán)單元多輸入多輸出文章來源:http://www.zghlxwxcb.cn/news/detail-652580.html
參考資料
[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261文章來源地址http://www.zghlxwxcb.cn/news/detail-652580.html
到了這里,關于回歸預測 | MATLAB實現BiLSTM雙向長短期記憶神經網絡多輸入多輸出預測的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網!