一、基本介紹
微軟聯(lián)合Facebook等在2017年搞了個(gè)深度學(xué)習(xí)以及機(jī)器學(xué)習(xí)模型的格式標(biāo)準(zhǔn)–ONNX,旨在將所有模型格式統(tǒng)一為一致,更方便地實(shí)現(xiàn)模型部署?,F(xiàn)在大多數(shù)的深度學(xué)習(xí)框架都支持ONNX模型轉(zhuǎn)出并提供相應(yīng)的導(dǎo)出接口。
ONNXRuntime(Open Neural Network Exchange)是微軟推出的一款針對(duì)ONNX模型格式的推理框架,用戶可以非常便利的用其運(yùn)行一個(gè)onnx模型。ONNXRuntime支持多種運(yùn)行后端包括CPU,GPU,TensorRT,DML等??梢哉f(shuō)ONNXRuntime是對(duì)ONNX模型最原生的支持,只要掌握模型導(dǎo)出的相應(yīng)操作,便能對(duì)將不同框架的模型進(jìn)行部署,提高開(kāi)發(fā)效率。
利用onnx和onnxruntime實(shí)現(xiàn)pytorch深度框架使用C++推理進(jìn)行服務(wù)器部署,模型推理的性能是比python快很多的。
1、下載
GitHub下載地址:
https://github.com/microsoft/onnxruntime/releases
?Release ONNX Runtime v1.9.0 · microsoft/onnxruntime · GitHub
onnxruntime-linux-x64-1.9.0.tgz?
2、解壓
下載的onnxruntime是直接編譯好的庫(kù)文件,直接放在自定義的文件夾中即可。在CMakeLists.txt中引入onnxruntime的頭文件、庫(kù)文件即可。
# 引入頭文件
include_directories(......../onnxruntime/include)
# 引入庫(kù)文件
link_directories(......../onnxruntime/lib)
二、Pytorch導(dǎo)出.onnx模型
首先,利用pytorch自帶的torch.onnx
模塊導(dǎo)出?.onnx?
模型文件,具體查看該部分pytorch官方文檔,主要流程如下:
import torch
checkpoint = torch.load(model_path)
model = ModelNet(params)
model.load_state_dict(checkpoint['model'])
model.eval()
input_x_1 = torch.randn(10,20)
input_x_2 = torch.randn(1,20,5)
output, mask = model(input_x_1, input_x_2)
torch.onnx.export(model,
(input_x_1, input_x_2),
'model.onnx',
input_names = ['input','input_mask'],
output_names = ['output','output_mask'],
opset_version=11,
verbose = True,
dynamic_axes={'input':{1,'seqlen'}, 'input_mask':{1:'seqlen',2:'time'},'output_mask':{0:'time'}})
torch.onnx.export參數(shù)在文檔里面都有,opset_version對(duì)應(yīng)的版本很重要,dynamic_axes是對(duì)輸入和輸出對(duì)應(yīng)維度可以進(jìn)行動(dòng)態(tài)設(shè)置,不設(shè)置的話輸入和輸出的Tensor 的 shape是不能改變的,如果輸入固定就不需要加。
導(dǎo)出的模型可否順利使用可以先使用python進(jìn)行檢測(cè)
import onnxruntime as ort
import numpy as np
ort_session = ort.InferenceSession('model.onnx')
outputs = ort_session.run(None,{'input':np.random.randn(10,20),'input_mask':np.random.randn(1,20,5)})
# 由于設(shè)置了dynamic_axes,支持對(duì)應(yīng)維度的變化
outputs = ort_session.run(None,{'input':np.random.randn(10,5),'input_mask':np.random.randn(1,26,2)})
# outputs 為 包含'output'和'output_mask'的list
import onnx
model = onnx.load('model.onnx')
onnx.checker.check_model(model)
如果沒(méi)有異常代表導(dǎo)出的模型沒(méi)有問(wèn)題,目前torch.onnx.export只能對(duì)部分支持的Tensor操作進(jìn)行識(shí)別,詳情參考Supported operators,對(duì)于包括transformer等基本的模型都是沒(méi)有問(wèn)題的,如果出現(xiàn)ATen等問(wèn)題,你就需要對(duì)模型不支持的Tensor操作進(jìn)行改進(jìn),以免影響C++對(duì)該模型的使用。
三、模型推理流程
總體來(lái)看,整個(gè)ONNXRuntime的運(yùn)行可以分為三個(gè)階段:
- Session構(gòu)造;
- 模型加載與初始化;
- 運(yùn)行;
1、第1階段:Session構(gòu)造
構(gòu)造階段即創(chuàng)建一個(gè)InferenceSession對(duì)象。在python前端構(gòu)建Session對(duì)象時(shí),python端會(huì)通過(guò)http://onnxruntime_pybind_state.cc調(diào)用C++中的InferenceSession類構(gòu)造函數(shù),得到一個(gè)InferenceSession對(duì)象。
InferenceSession構(gòu)造階段會(huì)進(jìn)行各個(gè)成員的初始化,成員包括負(fù)責(zé)OpKernel管理的KernelRegistryManager對(duì)象,持有Session配置信息的SessionOptions對(duì)象,負(fù)責(zé)圖分割的GraphTransformerManager,負(fù)責(zé)log管理的LoggingManager等。當(dāng)然,這個(gè)時(shí)候InferenceSession就是一個(gè)空殼子,只完成了對(duì)成員對(duì)象的初始構(gòu)建。
2、第2階段:模型加載與初始化
在完成InferenceSession對(duì)象的構(gòu)造后,會(huì)將onnx模型加載到InferenceSession中并進(jìn)行進(jìn)一步的初始化。
2.1. 模型加載
模型加載時(shí),會(huì)在C++后端會(huì)調(diào)用對(duì)應(yīng)的Load()函數(shù),InferenceSession一共提供了8種Load函數(shù)。包讀從url,ModelProto,void* model data,model istream等讀取ModelProto。InferenceSession會(huì)對(duì)ModelProto進(jìn)行解析然后持有其對(duì)應(yīng)的Model成員。
2.2. Providers注冊(cè)
在Load函數(shù)結(jié)束后,InferenceSession會(huì)調(diào)用兩個(gè)函數(shù):RegisterExecutionProviders()和sess->Initialize();
RegisterExecutionProviders函數(shù)會(huì)完成ExecutionProvider的注冊(cè)工作。這里解釋一下ExecutionProvider,ONNXRuntime用Provider表示不同的運(yùn)行設(shè)備比如CUDAProvider等。目前ONNXRuntimev1.0支持了包括CPU,CUDA,TensorRT,MKL等七種Providers。通過(guò)調(diào)用sess->RegisterExecutionProvider()函數(shù),InferenceSession通過(guò)一個(gè)list持有當(dāng)前運(yùn)行環(huán)境中支持的ExecutionProviders。
2.3. InferenceSession初始化
即sess->Initialize(),這時(shí)InferenceSession會(huì)根據(jù)自身持有的model和execution providers進(jìn)行進(jìn)一步的初始化(在第一階段Session構(gòu)造時(shí)僅僅持有了空殼子成員變量)。該步驟是InferenceSession初始化的核心,一系列核心操作如內(nèi)存分配,model partition,kernel注冊(cè)等都會(huì)在這個(gè)階段完成。
- 首先,session會(huì)根據(jù)level注冊(cè) graph optimization transformers,并通過(guò)GraphTransformerManager成員進(jìn)行持有。
- 接下來(lái)session會(huì)進(jìn)行OpKernel注冊(cè),OpKernel即定義的各個(gè)node對(duì)應(yīng)在不同運(yùn)行設(shè)備上的計(jì)算邏輯。這個(gè)過(guò)程會(huì)將持有的各個(gè)ExecutionProvider上定義的所有node對(duì)應(yīng)的Kernel注冊(cè)到session中,session通過(guò)KernelRegistryManager成員進(jìn)行持有和管理。
- 然后session會(huì)對(duì)Graph進(jìn)行圖變換,包括插入copy節(jié)點(diǎn),cast節(jié)點(diǎn)等。
- 接下來(lái)是model partition,也就是根運(yùn)行設(shè)備對(duì)graph進(jìn)行切分,決定每個(gè)node運(yùn)行在哪個(gè)provider上。
- 最后,為每個(gè)node創(chuàng)建ExecutePlan,運(yùn)行計(jì)劃主要包含了各個(gè)op的執(zhí)行順序,內(nèi)存申請(qǐng)管理,內(nèi)存復(fù)用管理等操作。
3、第3階段:模型運(yùn)行
模型運(yùn)行即InferenceSession每次讀入一個(gè)batch的數(shù)據(jù)并進(jìn)行計(jì)算得到模型的最終輸出。然而其實(shí)絕大多數(shù)的工作早已經(jīng)在InferenceSession初始化階段完成。細(xì)看下源碼就會(huì)發(fā)現(xiàn)run階段主要是順序調(diào)用各個(gè)node的對(duì)應(yīng)OpKernel進(jìn)行計(jì)算。
四、代碼
和其他所有主流框架相同,ONNXRuntime最常用的語(yǔ)言是python,而實(shí)際負(fù)責(zé)執(zhí)行框架運(yùn)行的則是C++。
下面就是C++通過(guò)onnxruntime對(duì).onnx模型的使用,參考官方樣例和常見(jiàn)問(wèn)題寫的模型多輸入多輸出的情況,部分參數(shù)可以參考樣例或者查官方API文檔。
1、案例01
BasicOrtHandler.h
#include "onnxruntime_cxx_api.h"
#include "opencv2/opencv.hpp"
#include <vector>
#define CHW 0
class BasicOrtHandler {
public:
Ort::Value BasicOrtHandler::create_tensor(const cv::Mat &mat, const std::vector<int64_t> &tensor_dims, const Ort::MemoryInfo &memory_info_handler, std::vector<float> &tensor_value_handler, unsigned int data_format);
protected:
Ort::Env ort_env;
Ort::Session *ort_session = nullptr;
const char *input_name = nullptr;
std::vector<const char *> input_node_names;
std::vector<int64_t> input_node_dims; // 1 input only.
std::size_t input_tensor_size = 1;
std::vector<float> input_values_handler;
// create input tensor
Ort::MemoryInfo memory_info_handler = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
std::vector<const char *> output_node_names;
std::vector<std::vector<int64_t>> output_node_dims; // >=1 outputs
const char*onnx_path = nullptr;
const char *log_id = nullptr;
int num_outputs = 1;
protected:
const unsigned int num_threads; // initialize at runtime.
protected:
explicit BasicOrtHandler(const std::string &_onnx_path, unsigned int _num_threads = 1);
virtual ~BasicOrtHandler();
protected:
BasicOrtHandler(const BasicOrtHandler &) = delete;
BasicOrtHandler(BasicOrtHandler &&) = delete;
BasicOrtHandler &operator=(const BasicOrtHandler &) = delete;
BasicOrtHandler &operator=(BasicOrtHandler &&) = delete;
protected:
virtual Ort::Value transform(const cv::Mat &mat) = 0;
private:
void initialize_handler();
};
BasicOrtHandler.cpp
BasicOrtHandler::BasicOrtHandler(const std::string &_onnx_path, unsigned int _num_threads) : log_id(_onnx_path.data()), num_threads(_num_threads) {
// string to wstring
#ifdef LITE_WIN32
std::wstring _w_onnx_path(lite::utils::to_wstring(_onnx_path));
onnx_path = _w_onnx_path.data();
#else
onnx_path = _onnx_path.data();
#endif
initialize_handler();
}
void BasicOrtHandler::initialize_handler() {
// set ort env
ort_env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, log_id);
// 0. session options
Ort::SessionOptions session_options;
// set op threads
session_options.SetIntraOpNumThreads(num_threads);
// set Optimization options:
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
// set log level
session_options.SetLogSeverityLevel(4);
// GPU compatiable.
// OrtCUDAProviderOptions provider_options;
// session_options.AppendExecutionProvider_CUDA(provider_options);
// #ifdef USE_CUDA
// OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0); // C API stable.
// #endif
// 1. session
ort_session = new Ort::Session(ort_env, onnx_path, session_options);
// memory allocation and options
Ort::AllocatorWithDefaultOptions allocator;
// 2. input name & input dims
input_name = ort_session->GetInputName(0, allocator);
input_node_names.resize(1);
input_node_names[0] = input_name;
// 3. input names & output dimms
Ort::TypeInfo type_info = ort_session->GetInputTypeInfo(0);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
input_tensor_size = 1;
input_node_dims = tensor_info.GetShape();
for (unsigned int i = 0; i < input_node_dims.size(); ++i) {
input_tensor_size *= input_node_dims.at(i);
}
input_values_handler.resize(input_tensor_size);
// 4. output names & output dimms
num_outputs = ort_session->GetOutputCount();
output_node_names.resize(num_outputs);
for (unsigned int i = 0; i < num_outputs; ++i) {
output_node_names[i] = ort_session->GetOutputName(i, allocator);
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
auto output_dims = output_tensor_info.GetShape();
output_node_dims.push_back(output_dims);
}
}
Ort::Value BasicOrtHandler::create_tensor(const cv::Mat &mat, const std::vector<int64_t> &tensor_dims, const Ort::MemoryInfo &memory_info_handler, std::vector<float> &tensor_value_handler, unsigned int data_format) throw(std::runtime_error) {
const unsigned int rows = mat.rows;
const unsigned int cols = mat.cols;
const unsigned int channels = mat.channels();
cv::Mat mat_ref;
if (mat.type() != CV_32FC(channels)){
mat.convertTo(mat_ref, CV_32FC(channels));
} else{
mat_ref = mat; // reference only. zero-time cost. support 1/2/3/... channels
}
if (tensor_dims.size() != 4) {
throw std::runtime_error("dims mismatch.");
}
if (tensor_dims.at(0) != 1) {
throw std::runtime_error("batch != 1");
}
// CXHXW
if (data_format == CHW) {
const unsigned int target_channel = tensor_dims.at(1);
const unsigned int target_height = tensor_dims.at(2);
const unsigned int target_width = tensor_dims.at(3);
const unsigned int target_tensor_size = target_channel * target_height * target_width;
if (target_channel != channels) {
throw std::runtime_error("channel mismatch.");
}
tensor_value_handler.resize(target_tensor_size);
cv::Mat resize_mat_ref;
if (target_height != rows || target_width != cols) {
cv::resize(mat_ref, resize_mat_ref, cv::Size(target_width, target_height));
} else{
resize_mat_ref = mat_ref; // reference only. zero-time cost.
}
std::vector<cv::Mat> mat_channels;
cv::split(resize_mat_ref, mat_channels);
// CXHXW
for (unsigned int i = 0; i < channels; ++i){
std::memcpy(tensor_value_handler.data() + i * (target_height * target_width), mat_channels.at(i).data,target_height * target_width * sizeof(float));
}
return Ort::Value::CreateTensor<float>(memory_info_handler, tensor_value_handler.data(), target_tensor_size, tensor_dims.data(), tensor_dims.size());
}
// HXWXC
const unsigned int target_channel = tensor_dims.at(3);
const unsigned int target_height = tensor_dims.at(1);
const unsigned int target_width = tensor_dims.at(2);
const unsigned int target_tensor_size = target_channel * target_height * target_width;
if (target_channel != channels) {
throw std::runtime_error("channel mismatch!");
}
tensor_value_handler.resize(target_tensor_size);
cv::Mat resize_mat_ref;
if (target_height != rows || target_width != cols) {
cv::resize(mat_ref, resize_mat_ref, cv::Size(target_width, target_height));
} else {
resize_mat_ref = mat_ref; // reference only. zero-time cost.
}
std::memcpy(tensor_value_handler.data(), resize_mat_ref.data, target_tensor_size * sizeof(float));
return Ort::Value::CreateTensor<float>(memory_info_handler, tensor_value_handler.data(), target_tensor_size, tensor_dims.data(), tensor_dims.size());
}
main.cpp
const std::string _onnx_path="";
unsigned int _num_threads = 1;
//init inference
BasicOrtHandler basicOrtHandler(_onnx_path,_num_threads);
// after transform image
const cv::Mat mat = "";
const std::vector<int64_t> &tensor_dims = basicOrtHandler.input_node_dims;
const Ort::MemoryInfo &memory_info_handler = basicOrtHandler.memory_info_handler;
std::vector<float> &tensor_value_handler = basicOrtHandler.input_values_handler;
unsigned int data_format = CHW; // 預(yù)處理后的模式
// 1. make input tensor
Ort::Value input_tensor = basicOrtHandler.create_tensor(mat_rs);
// 2. inference scores & boxes.
auto output_tensors = ort_session->Run(Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), num_outputs);
// 3. get output tensor
Ort::Value &pred = output_tensors.at(0); // (1,n,c)
//postprocess
...
2、案例02 ?
#include <assert.h>
#include <vector>
#include <onnxruntime_cxx_api.h>
int main(int argc, char* argv[]) {
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test");
Ort::SessionOptions session_options;
session_options.SetIntraOpNumThreads(1);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
#ifdef _WIN32
const wchar_t* model_path = L"model.onnx";
#else
const char* model_path = "model.onnx";
#endif
Ort::Session session(env, model_path, session_options);
// print model input layer (node names, types, shape etc.)
Ort::AllocatorWithDefaultOptions allocator;
// print number of model input nodes
size_t num_input_nodes = session.GetInputCount();
std::vector<const char*> input_node_names = {"input","input_mask"};
std::vector<const char*> output_node_names = {"output","output_mask"};
std::vector<int64_t> input_node_dims = {10, 20};
size_t input_tensor_size = 10 * 20;
std::vector<float> input_tensor_values(input_tensor_size);
for (unsigned int i = 0; i < input_tensor_size; i++)
input_tensor_values[i] = (float)i / (input_tensor_size + 1);
// create input tensor object from data values
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), 2);
assert(input_tensor.IsTensor());
std::vector<int64_t> input_mask_node_dims = {1, 20, 4};
size_t input_mask_tensor_size = 1 * 20 * 4;
std::vector<float> input_mask_tensor_values(input_mask_tensor_size);
for (unsigned int i = 0; i < input_mask_tensor_size; i++)
input_mask_tensor_values[i] = (float)i / (input_mask_tensor_size + 1);
// create input tensor object from data values
auto mask_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value input_mask_tensor = Ort::Value::CreateTensor<float>(mask_memory_info, input_mask_tensor_values.data(), input_mask_tensor_size, input_mask_node_dims.data(), 3);
assert(input_mask_tensor.IsTensor());
std::vector<Ort::Value> ort_inputs;
ort_inputs.push_back(std::move(input_tensor));
ort_inputs.push_back(std::move(input_mask_tensor));
// score model & input tensor, get back output tensor
auto output_tensors = session.Run(Ort::RunOptions{nullptr}, input_node_names.data(), ort_inputs.data(), ort_inputs.size(), output_node_names.data(), 2);
// Get pointer to output tensor float values
float* floatarr = output_tensors[0].GetTensorMutableData<float>();
float* floatarr_mask = output_tensors[1].GetTensorMutableData<float>();
printf("Done!\n");
return 0;
}
編譯命令:
g++ infer.cpp -o infer onnxruntime-linux-x64-1.4.0/lib/libonnxruntime.so.1.4.0 -Ionnxruntime-linux-x64-1.4.0/include/ -std=c++11
onnxruntime中Tensor支持的數(shù)據(jù)類型包括:
typedef enum ONNXTensorElementDataType {
ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED,
ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT, // maps to c type float
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8, // maps to c type uint8_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8, // maps to c type int8_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16, // maps to c type uint16_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16, // maps to c type int16_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32, // maps to c type int32_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64, // maps to c type int64_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING, // maps to c++ type std::string
ONNX_TENSOR_ELEMENT_DATA_TYPE_BOOL,
ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16,
ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE, // maps to c type double
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT32, // maps to c type uint32_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT64, // maps to c type uint64_t
ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX64, // complex with float32 real and imaginary components
ONNX_TENSOR_ELEMENT_DATA_TYPE_COMPLEX128, // complex with float64 real and imaginary components
ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16 // Non-IEEE floating-point format based on IEEE754 single-precision
} ONNXTensorElementDataType;
其中需要注意的是使用bool型,需要從uint_8的vector轉(zhuǎn)為bool型:
std::vector<uint8_t> mask_tensor_values;
for(int i = 0; i < mask_tensor_size; i++){
mask_tensor_values.push_back((uint8_t)(true));
}
auto mask_memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value mask_tensor = Ort::Value::CreateTensor<bool>(mask_memory_info, reinterpret_cast<bool *>(mask_tensor_values.data()),mask_tensor_size, mask_node_dims.data(), 3);
性能測(cè)試
實(shí)際情況粗略統(tǒng)計(jì),以transformer為例,onnxruntime-c++上的運(yùn)行效率要比pytorch-python快2-5倍
C++-onnx:用onnxruntime部署自己的模型_u013250861的博客-CSDN博客
ONNX Runtime使用簡(jiǎn)單介紹_竹葉青l(xiāng)vye的博客-CSDN博客_onnxruntime 使用
onnxruntime的c++使用_chencision的博客-CSDN博客_c++ onnxruntime
onnxruntime C++ 使用(一)_SongpingWang的技術(shù)博客_51CTO博客
OnnxRunTime的推理流程_hjxu2016的博客-CSDN博客_onnxruntime文章來(lái)源:http://www.zghlxwxcb.cn/news/detail-611766.html
onnxruntime安裝與使用(附實(shí)踐中發(fā)現(xiàn)的一些問(wèn)題)_本初-ben的博客-CSDN博客_onnxruntime安裝文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-611766.html
到了這里,關(guān)于ONNX:C++通過(guò)onnxruntime使用.onnx模型進(jìn)行前向計(jì)算【下載的onnxruntime是編譯好的庫(kù)文件,可直接使用】的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!