国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

ResNeXt代碼復現+超詳細注釋(PyTorch)

這篇具有很好參考價值的文章主要介紹了ResNeXt代碼復現+超詳細注釋(PyTorch)。希望對大家有所幫助。如果存在錯誤或未考慮完全的地方,請大家不吝賜教,您也可以點擊"舉報違法"按鈕提交疑問。

ResNeXt就是一種典型的混合模型,由基礎的Inception+ResNet組合而成,本質在gruops分組卷積,核心創(chuàng)新點就是用一種平行堆疊相同拓撲結構的blocks代替原來 ResNet 的三層卷積的block,在不明顯增加參數量級的情況下提升了模型的準確率,同時由于拓撲結構相同,超參數也減少了,便于模型移植。

關于論文更詳細的解讀可以看我上一篇筆記:經典神經網絡論文超詳細解讀(八)——ResNeXt學習筆記(翻譯+精讀+代碼復現)

接下來我們進行代碼的復現?


一、ResNeXt Block 結構

1.1 基礎結構?

ResNeXt是ResNet基礎上的改進版本,改進的部分不多,主要將之前的殘差結構換成了另外的一個Block結構,并且使用了組卷積的概念。下圖是ResNeXt的一個基礎Block。

左圖是其基礎結構,靈感來自于ResNet的BottleNeck(關于ResNet代碼的詳細講解,大家可以看我之前的文章:ResNet代碼復現+超詳細注釋(PyTorch))。受Inception啟發(fā)論文將Residual部分分成若干個支路,這個支路的數量就是cardinality的含義(Inception代碼詳細講解可參考:GoogLeNet InceptionV1代碼復現+超詳細注釋(PyTorch))。

右圖是ResNeXt提出的一個組卷積的概念:將輸入通道為256的數據通過1*1卷積壓縮成大小為4的32組,合起來也就是128通道,然后進行卷積操作后,再用1*1卷積擴充回32組256通道,將32組數據按對應位置相加合成一個256通道的輸出。

resnext代碼,# 論文代碼復現,pytorch,深度學習,人工智能,神經網絡,計算機視覺


1.2 三種等效的優(yōu)化結構?

(a)表示先劃分,單獨卷積并計算輸出,最后輸出相加。split-transform-merge三階段形式

(b)表示先劃分,單獨卷積,然后拼接再計算輸出。將各分支的最后一個1×1卷積聚合成一個卷積。

(c)就是分組卷積。將各分支的第一個1×1卷積融合成一個卷積,3×3卷積采用group(分組)卷積的形式,分組數=cardinality(基數)?resnext代碼,# 論文代碼復現,pytorch,深度學習,人工智能,神經網絡,計算機視覺

以上三個Block模塊在數學計算上是完全等價的。

(c)為例:通過1×1的卷積層將輸入channel從256降為128,然后利用組卷積進行處理,卷積核大小為3×3組數為32,再利用1×1的卷積層進行升維,將輸出與輸入相加,得到最終輸出。

再看(b)模塊,就是將第一層和第二層的卷積分組,將第一層卷積(卷積核大小為1×1,每個卷積核有256層)分為32組,每組4個卷積核,這樣每一組輸出的channel為4;將第二層卷積也分為32組對應第一層,每一組輸入的channel為4,每一組4個卷積核輸出channel也為4,再將輸出拼接為channel為128的輸出,再經過一個256個卷積核的卷積層得到最終輸出。

對于(a)模塊,就是對b模塊的最后一層進行拆分,就是將第二層的32組的輸出再經過一層(卷積核大小為1×1,每個卷積核有4層,一共有256個卷積核)卷積,再把這32組輸出相加得到最終輸出。


二、ResNeXt 網絡結構

?下圖是ResNet-50和ResNeXt-50(32x4d)的對比,可以發(fā)現二者網絡整體結構一致,ResNeXt替換了基本的block。32?指進入網絡的第一個ResNeXt基本結構的分組數量C(即基數)為32。4d?表示depth即每一個分組的通道數為4(所以第一個基本結構輸入通道數為128)?

模型設計兩個原則:

(1)如果輸出的空間尺寸一樣,那么模塊的超參數(寬度和卷積核尺寸)也是一樣的。

(2)每當空間分辨率/2(降采樣),則卷積核的寬度*2。這樣保持模塊計算復雜度。

resnext代碼,# 論文代碼復現,pytorch,深度學習,人工智能,神經網絡,計算機視覺?


三、ResNeXt的PyTorch實現?

?3.1BasicBlock模塊

基礎Block模塊,也就是對應18/34層的BasicBlock。這里實現和ResNet一樣,就不再過多論述。

代碼

'''-------------一、BasicBlock模塊-----------------------------'''
# 用于ResNet18和ResNet34基本殘差結構塊
class BasicBlock(nn.Module):
    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(),
            nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.downsample(downsample)
        )

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.left(x)  # 這是由于殘差塊需要保留原始輸入
        out += identity  # 這是ResNet的核心,在輸出上疊加了輸入x
        out = F.relu(out)
        return out

3.2?Bottleneck模塊

從表中可以看出,ResNeXt網絡每一個convx的第一層和第二層卷積的卷積核個數是ResNet網絡的兩倍,在代碼實現時,需要注意在代碼中增加一下兩個參數groupswidth_per_group(即為group數和conv2中組卷積每個group的卷積核個數)并且根據這兩個參數計算出第一層卷積的輸出(為ResNet網絡的兩倍)。

代碼

'''-------------二、Bottleneck模塊-----------------------------'''
class Bottleneck(nn.Module):

    expansion = 4

    # 這里相對于RseNet,在代碼中增加一下兩個參數groups和width_per_group(即為group數和conv2中組卷積每個group的卷積核個數)
    # 默認值就是正常的ResNet
    def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()
        # 這里也可以自動計算中間的通道數,也就是3x3卷積后的通道數,如果不改變就是out_channels
        # 如果groups=32,with_per_group=4,out_channels就翻倍了
        width = int(out_channel * (width_per_group / 64.)) * groups

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        # 組卷積的數,需要傳入參數
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,
                               kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
        # -----------------------------------------
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity  # 殘差連接
        out = self.relu(out)

        return out

3.3搭建ResNeXt網絡結構

(1)網絡整體結構

根據(c)模塊,首先通過1x1的卷積層將輸入特征矩陣的channel從256降維到128;再通過3x3的32組group卷積對其進行處理;再通過1x1的卷積層進行將特征矩陣的channel從128升維到256;最后主分支與短路連接的輸出進行相加得到最終輸出。

代碼

'''-------------三、搭建ResNeXt結構-----------------------------'''
class ResNeXt(nn.Module):
    def __init__(self,
                 block,  # 表示block的類型
                 blocks_num,  # 表示的是每一層block的個數
                 num_classes=1000,  # 表示類別
                 include_top=True,  # 表示是否含有分類層(可做遷移學習)
                 groups=1,  # 表示組卷積的數
                 width_per_group=64):
        super(ResNeXt, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.groups = groups
        self.width_per_group = width_per_group

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])           # 64 -> 128
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)# 128 -> 256
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)# 256 -> 512
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2) # 512 -> 1024
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)



    # 形成單個Stage的網絡結構
    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))
        # 該部分是將每個blocks的第一個殘差結構保存在layers列表中。
        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion  # 得到最后的輸出

        # 該部分是將每個blocks的剩下殘差結構保存在layers列表中,這樣就完成了一個blocks的構造。
        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))

         # 返回Conv Block和Identity Block的集合,形成一個Stage的網絡結構
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x

(2)搭建網絡模型

使用時直接調用每種不同層的結構對應的殘差塊作為參數傳入。除了殘差塊不同以外,每個殘差塊重復的次數也不同,所以也作為參數。每個不同的模型只需往ResNet模型中傳入不同參數即可。文章來源地址http://www.zghlxwxcb.cn/news/detail-606487.html

代碼

def ResNet34(num_classes=1000, include_top=True):

    return ResNeXt(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def ResNet50(num_classes=1000, include_top=True):

    return ResNeXt(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def ResNet101(num_classes=1000, include_top=True):

    return ResNeXt(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


# 論文中的ResNeXt50_32x4d
def ResNeXt50_32x4d(num_classes=1000, include_top=True):

    groups = 32
    width_per_group = 4
    return ResNeXt(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)


def ResNeXt101_32x8d(num_classes=1000, include_top=True):

    groups = 32
    width_per_group = 8
    return ResNeXt(Bottleneck, [3, 4, 23, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

3.4測試網絡模型

(1)網絡模型測試并打印論文中的ResNeXt50_32x4d

if __name__ == '__main__':
    model = ResNeXt50_32x4d()
    print(model)
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)
# test()

打印模型如下

ResNeXt(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer2): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer3): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (4): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (5): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer4): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)
torch.Size([1, 1000])

Process finished with exit code 0

(2)使用torchsummary打印每個網絡模型的詳細信息

from torchsummary import summary

if __name__ == '__main__':
    net = ResNeXt50_32x4d().cuda()
    summary(net, (3, 224, 224))

打印模型如下?

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
            Conv2d-5          [-1, 256, 56, 56]          16,384
       BatchNorm2d-6          [-1, 256, 56, 56]             512
            Conv2d-7          [-1, 128, 56, 56]           8,192
       BatchNorm2d-8          [-1, 128, 56, 56]             256
              ReLU-9          [-1, 128, 56, 56]               0
           Conv2d-10          [-1, 128, 56, 56]           4,608
      BatchNorm2d-11          [-1, 128, 56, 56]             256
             ReLU-12          [-1, 128, 56, 56]               0
           Conv2d-13          [-1, 256, 56, 56]          32,768
      BatchNorm2d-14          [-1, 256, 56, 56]             512
             ReLU-15          [-1, 256, 56, 56]               0
       Bottleneck-16          [-1, 256, 56, 56]               0
           Conv2d-17          [-1, 128, 56, 56]          32,768
      BatchNorm2d-18          [-1, 128, 56, 56]             256
             ReLU-19          [-1, 128, 56, 56]               0
           Conv2d-20          [-1, 128, 56, 56]           4,608
      BatchNorm2d-21          [-1, 128, 56, 56]             256
             ReLU-22          [-1, 128, 56, 56]               0
           Conv2d-23          [-1, 256, 56, 56]          32,768
      BatchNorm2d-24          [-1, 256, 56, 56]             512
             ReLU-25          [-1, 256, 56, 56]               0
       Bottleneck-26          [-1, 256, 56, 56]               0
           Conv2d-27          [-1, 128, 56, 56]          32,768
      BatchNorm2d-28          [-1, 128, 56, 56]             256
             ReLU-29          [-1, 128, 56, 56]               0
           Conv2d-30          [-1, 128, 56, 56]           4,608
      BatchNorm2d-31          [-1, 128, 56, 56]             256
             ReLU-32          [-1, 128, 56, 56]               0
           Conv2d-33          [-1, 256, 56, 56]          32,768
      BatchNorm2d-34          [-1, 256, 56, 56]             512
             ReLU-35          [-1, 256, 56, 56]               0
       Bottleneck-36          [-1, 256, 56, 56]               0
           Conv2d-37          [-1, 512, 28, 28]         131,072
      BatchNorm2d-38          [-1, 512, 28, 28]           1,024
           Conv2d-39          [-1, 256, 56, 56]          65,536
      BatchNorm2d-40          [-1, 256, 56, 56]             512
             ReLU-41          [-1, 256, 56, 56]               0
           Conv2d-42          [-1, 256, 28, 28]          18,432
      BatchNorm2d-43          [-1, 256, 28, 28]             512
             ReLU-44          [-1, 256, 28, 28]               0
           Conv2d-45          [-1, 512, 28, 28]         131,072
      BatchNorm2d-46          [-1, 512, 28, 28]           1,024
             ReLU-47          [-1, 512, 28, 28]               0
       Bottleneck-48          [-1, 512, 28, 28]               0
           Conv2d-49          [-1, 256, 28, 28]         131,072
      BatchNorm2d-50          [-1, 256, 28, 28]             512
             ReLU-51          [-1, 256, 28, 28]               0
           Conv2d-52          [-1, 256, 28, 28]          18,432
      BatchNorm2d-53          [-1, 256, 28, 28]             512
             ReLU-54          [-1, 256, 28, 28]               0
           Conv2d-55          [-1, 512, 28, 28]         131,072
      BatchNorm2d-56          [-1, 512, 28, 28]           1,024
             ReLU-57          [-1, 512, 28, 28]               0
       Bottleneck-58          [-1, 512, 28, 28]               0
           Conv2d-59          [-1, 256, 28, 28]         131,072
      BatchNorm2d-60          [-1, 256, 28, 28]             512
             ReLU-61          [-1, 256, 28, 28]               0
           Conv2d-62          [-1, 256, 28, 28]          18,432
      BatchNorm2d-63          [-1, 256, 28, 28]             512
             ReLU-64          [-1, 256, 28, 28]               0
           Conv2d-65          [-1, 512, 28, 28]         131,072
      BatchNorm2d-66          [-1, 512, 28, 28]           1,024
             ReLU-67          [-1, 512, 28, 28]               0
       Bottleneck-68          [-1, 512, 28, 28]               0
           Conv2d-69          [-1, 256, 28, 28]         131,072
      BatchNorm2d-70          [-1, 256, 28, 28]             512
             ReLU-71          [-1, 256, 28, 28]               0
           Conv2d-72          [-1, 256, 28, 28]          18,432
      BatchNorm2d-73          [-1, 256, 28, 28]             512
             ReLU-74          [-1, 256, 28, 28]               0
           Conv2d-75          [-1, 512, 28, 28]         131,072
      BatchNorm2d-76          [-1, 512, 28, 28]           1,024
             ReLU-77          [-1, 512, 28, 28]               0
       Bottleneck-78          [-1, 512, 28, 28]               0
           Conv2d-79         [-1, 1024, 14, 14]         524,288
      BatchNorm2d-80         [-1, 1024, 14, 14]           2,048
           Conv2d-81          [-1, 512, 28, 28]         262,144
      BatchNorm2d-82          [-1, 512, 28, 28]           1,024
             ReLU-83          [-1, 512, 28, 28]               0
           Conv2d-84          [-1, 512, 14, 14]          73,728
      BatchNorm2d-85          [-1, 512, 14, 14]           1,024
             ReLU-86          [-1, 512, 14, 14]               0
           Conv2d-87         [-1, 1024, 14, 14]         524,288
      BatchNorm2d-88         [-1, 1024, 14, 14]           2,048
             ReLU-89         [-1, 1024, 14, 14]               0
       Bottleneck-90         [-1, 1024, 14, 14]               0
           Conv2d-91          [-1, 512, 14, 14]         524,288
      BatchNorm2d-92          [-1, 512, 14, 14]           1,024
             ReLU-93          [-1, 512, 14, 14]               0
           Conv2d-94          [-1, 512, 14, 14]          73,728
      BatchNorm2d-95          [-1, 512, 14, 14]           1,024
             ReLU-96          [-1, 512, 14, 14]               0
           Conv2d-97         [-1, 1024, 14, 14]         524,288
      BatchNorm2d-98         [-1, 1024, 14, 14]           2,048
             ReLU-99         [-1, 1024, 14, 14]               0
      Bottleneck-100         [-1, 1024, 14, 14]               0
          Conv2d-101          [-1, 512, 14, 14]         524,288
     BatchNorm2d-102          [-1, 512, 14, 14]           1,024
            ReLU-103          [-1, 512, 14, 14]               0
          Conv2d-104          [-1, 512, 14, 14]          73,728
     BatchNorm2d-105          [-1, 512, 14, 14]           1,024
            ReLU-106          [-1, 512, 14, 14]               0
          Conv2d-107         [-1, 1024, 14, 14]         524,288
     BatchNorm2d-108         [-1, 1024, 14, 14]           2,048
            ReLU-109         [-1, 1024, 14, 14]               0
      Bottleneck-110         [-1, 1024, 14, 14]               0
          Conv2d-111          [-1, 512, 14, 14]         524,288
     BatchNorm2d-112          [-1, 512, 14, 14]           1,024
            ReLU-113          [-1, 512, 14, 14]               0
          Conv2d-114          [-1, 512, 14, 14]          73,728
     BatchNorm2d-115          [-1, 512, 14, 14]           1,024
            ReLU-116          [-1, 512, 14, 14]               0
          Conv2d-117         [-1, 1024, 14, 14]         524,288
     BatchNorm2d-118         [-1, 1024, 14, 14]           2,048
            ReLU-119         [-1, 1024, 14, 14]               0
      Bottleneck-120         [-1, 1024, 14, 14]               0
          Conv2d-121          [-1, 512, 14, 14]         524,288
     BatchNorm2d-122          [-1, 512, 14, 14]           1,024
            ReLU-123          [-1, 512, 14, 14]               0
          Conv2d-124          [-1, 512, 14, 14]          73,728
     BatchNorm2d-125          [-1, 512, 14, 14]           1,024
            ReLU-126          [-1, 512, 14, 14]               0
          Conv2d-127         [-1, 1024, 14, 14]         524,288
     BatchNorm2d-128         [-1, 1024, 14, 14]           2,048
            ReLU-129         [-1, 1024, 14, 14]               0
      Bottleneck-130         [-1, 1024, 14, 14]               0
          Conv2d-131          [-1, 512, 14, 14]         524,288
     BatchNorm2d-132          [-1, 512, 14, 14]           1,024
            ReLU-133          [-1, 512, 14, 14]               0
          Conv2d-134          [-1, 512, 14, 14]          73,728
     BatchNorm2d-135          [-1, 512, 14, 14]           1,024
            ReLU-136          [-1, 512, 14, 14]               0
          Conv2d-137         [-1, 1024, 14, 14]         524,288
     BatchNorm2d-138         [-1, 1024, 14, 14]           2,048
            ReLU-139         [-1, 1024, 14, 14]               0
      Bottleneck-140         [-1, 1024, 14, 14]               0
          Conv2d-141           [-1, 2048, 7, 7]       2,097,152
     BatchNorm2d-142           [-1, 2048, 7, 7]           4,096
          Conv2d-143         [-1, 1024, 14, 14]       1,048,576
     BatchNorm2d-144         [-1, 1024, 14, 14]           2,048
            ReLU-145         [-1, 1024, 14, 14]               0
          Conv2d-146           [-1, 1024, 7, 7]         294,912
     BatchNorm2d-147           [-1, 1024, 7, 7]           2,048
            ReLU-148           [-1, 1024, 7, 7]               0
          Conv2d-149           [-1, 2048, 7, 7]       2,097,152
     BatchNorm2d-150           [-1, 2048, 7, 7]           4,096
            ReLU-151           [-1, 2048, 7, 7]               0
      Bottleneck-152           [-1, 2048, 7, 7]               0
          Conv2d-153           [-1, 1024, 7, 7]       2,097,152
     BatchNorm2d-154           [-1, 1024, 7, 7]           2,048
            ReLU-155           [-1, 1024, 7, 7]               0
          Conv2d-156           [-1, 1024, 7, 7]         294,912
     BatchNorm2d-157           [-1, 1024, 7, 7]           2,048
            ReLU-158           [-1, 1024, 7, 7]               0
          Conv2d-159           [-1, 2048, 7, 7]       2,097,152
     BatchNorm2d-160           [-1, 2048, 7, 7]           4,096
            ReLU-161           [-1, 2048, 7, 7]               0
      Bottleneck-162           [-1, 2048, 7, 7]               0
          Conv2d-163           [-1, 1024, 7, 7]       2,097,152
     BatchNorm2d-164           [-1, 1024, 7, 7]           2,048
            ReLU-165           [-1, 1024, 7, 7]               0
          Conv2d-166           [-1, 1024, 7, 7]         294,912
     BatchNorm2d-167           [-1, 1024, 7, 7]           2,048
            ReLU-168           [-1, 1024, 7, 7]               0
          Conv2d-169           [-1, 2048, 7, 7]       2,097,152
     BatchNorm2d-170           [-1, 2048, 7, 7]           4,096
            ReLU-171           [-1, 2048, 7, 7]               0
      Bottleneck-172           [-1, 2048, 7, 7]               0
AdaptiveAvgPool2d-173           [-1, 2048, 1, 1]               0
          Linear-174                 [-1, 1000]       2,049,000
================================================================
Total params: 25,028,904
Trainable params: 25,028,904
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 361.78
Params size (MB): 95.48
Estimated Total Size (MB): 457.83
----------------------------------------------------------------

Process finished with exit code 0


3.5完整代碼

import torch
import torch.nn as nn
import torch.nn.functional as F

'''-------------一、BasicBlock模塊-----------------------------'''
# 用于ResNet18和ResNet34基本殘差結構塊
class BasicBlock(nn.Module):
    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.left = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(),
            nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.downsample(downsample)
        )

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.left(x)  # 這是由于殘差塊需要保留原始輸入
        out += identity  # 這是ResNet的核心,在輸出上疊加了輸入x
        out = F.relu(out)
        return out

'''-------------二、Bottleneck模塊-----------------------------'''
class Bottleneck(nn.Module):

    expansion = 4

    # 這里相對于RseNet,在代碼中增加一下兩個參數groups和width_per_group(即為group數和conv2中組卷積每個group的卷積核個數)
    # 默認值就是正常的ResNet
    def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()
        # 這里也可以自動計算中間的通道數,也就是3x3卷積后的通道數,如果不改變就是out_channels
        # 如果groups=32,with_per_group=4,out_channels就翻倍了
        width = int(out_channel * (width_per_group / 64.)) * groups

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        # 組卷積的數,需要傳入參數
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,
                               kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
        # -----------------------------------------
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity  # 殘差連接
        out = self.relu(out)

        return out

'''-------------三、搭建ResNeXt結構-----------------------------'''
class ResNeXt(nn.Module):
    def __init__(self,
                 block,  # 表示block的類型
                 blocks_num,  # 表示的是每一層block的個數
                 num_classes=1000,  # 表示類別
                 include_top=True,  # 表示是否含有分類層(可做遷移學習)
                 groups=1,  # 表示組卷積的數
                 width_per_group=64):
        super(ResNeXt, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.groups = groups
        self.width_per_group = width_per_group

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])           # 64 -> 128
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)# 128 -> 256
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)# 256 -> 512
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2) # 512 -> 1024
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)



    # 形成單個Stage的網絡結構
    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))
        # 該部分是將每個blocks的第一個殘差結構保存在layers列表中。
        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion  # 得到最后的輸出

        # 該部分是將每個blocks的剩下殘差結構保存在layers列表中,這樣就完成了一個blocks的構造。
        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))

         # 返回Conv Block和Identity Block的集合,形成一個Stage的網絡結構
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x


def ResNet34(num_classes=1000, include_top=True):

    return ResNeXt(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def ResNet50(num_classes=1000, include_top=True):

    return ResNeXt(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def ResNet101(num_classes=1000, include_top=True):

    return ResNeXt(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)


# 論文中的ResNeXt50_32x4d
def ResNeXt50_32x4d(num_classes=1000, include_top=True):

    groups = 32
    width_per_group = 4
    return ResNeXt(Bottleneck, [3, 4, 6, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)


def ResNeXt101_32x8d(num_classes=1000, include_top=True):

    groups = 32
    width_per_group = 8
    return ResNeXt(Bottleneck, [3, 4, 23, 3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

'''
if __name__ == '__main__':
    model = ResNeXt50_32x4d()
    print(model)
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)
# test()
'''
from torchsummary import summary

if __name__ == '__main__':
    net = ResNeXt50_32x4d().cuda()
    summary(net, (3, 224, 224))

到了這里,關于ResNeXt代碼復現+超詳細注釋(PyTorch)的文章就介紹完了。如果您還想了解更多內容,請在右上角搜索TOY模板網以前的文章或繼續(xù)瀏覽下面的相關文章,希望大家以后多多支持TOY模板網!

本文來自互聯(lián)網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。如若轉載,請注明出處: 如若內容造成侵權/違法違規(guī)/事實不符,請點擊違法舉報進行投訴反饋,一經查實,立即刪除!

領支付寶紅包贊助服務器費用

相關文章

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領取紅包,優(yōu)惠每天領

二維碼1

領取紅包

二維碼2

領紅包