需提前觀看:MSP430F5529庫(kù)函數(shù)學(xué)習(xí)——串口
?
目錄
代碼
ADC初始化部分
引腳復(fù)位
ADC12_A_init()
函數(shù)聲明
baseAddress
sampleHoldSignalSourceSelect
clockSourceSelec
clockSourceDivider
ADC12_A_enable()
ADC12_A_setupSamplingTimer()
ADC12_A_configureMemory()
memoryBufferControlIndex
?inputSourceSelect
positiveRefVoltageSourceSelect和negativeRefVoltageSourceSelect
endOfSequence
電壓信號(hào)讀取部分
ADC12_A_startConversion()
函數(shù)聲明
baseAddress
startingMemoryBufferIndex
conversionSequenceModeSelect
ADC12_A_isBusy()
ADC12_A_getResults()
return
我這里的代碼意思是利用P6.0口作為ADC采集,利用軟件觸發(fā)的方式進(jìn)行采集信號(hào)。每過(guò)1S采集一次ADC信號(hào)。并將ADC的值轉(zhuǎn)換為電壓值發(fā)送給上位機(jī)。
代碼
#include "driverlib.h"
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#define MCLK_IN_HZ 1000000
#define delay_us(x) __delay_cycles((MCLK_IN_HZ/1000000*(x)))
#define delay_ms(x) __delay_cycles((MCLK_IN_HZ/1000*(x)))
void setupADC(void);
unsigned long readADC(void);
void UART_printf(uint16_t baseAddress, const char *format,...);
void Usart1_Init();
//-------------------------------- m a i n -----------------------------------
int main(void)
{
WDT_A_hold(WDT_A_BASE);
Usart1_Init();
setupADC();
while(1)
{
delay_ms(1000);
UART_printf(USCI_A1_BASE,"Result = %d mV\n", readADC());
}
}
//----------------------------- s e t u p A D C -------------------------------
void setupADC(void){
#define ADCpin GPIO_PORT_P6,GPIO_PIN0
GPIO_setAsPeripheralModuleFunctionOutputPin(ADCpin); // 復(fù)位P6.0
//Initialize the ADC12_A Module
/*
* ADC12_A模塊的基址
* 軟件觸發(fā)
* 使用MODOSC 5MHZ數(shù)字振蕩器作為時(shí)鐘源
* 一分頻
*/
ADC12_A_init(ADC12_A_BASE,ADC12_A_SAMPLEHOLDSOURCE_SC, ADC12_A_CLOCKSOURCE_ADC12OSC, ADC12_A_CLOCKDIVIDER_1); //軟件觸發(fā),內(nèi)部振蕩器MODCLK作為時(shí)鐘
ADC12_A_enable(ADC12_A_BASE); //啟用ADC12_A模塊
//設(shè)置并啟用采樣定時(shí)器脈沖,這里是使用的軟件觸發(fā)的形式,所以選擇失能
ADC12_A_setupSamplingTimer(ADC12_A_BASE,ADC12_A_CYCLEHOLD_16_CYCLES,ADC12_A_CYCLEHOLD_16_CYCLES,ADC12_A_MULTIPLESAMPLESDISABLE);
ADC12_A_configureMemoryParam param = {0};
param.memoryBufferControlIndex = ADC12_A_MEMORY_0; //將內(nèi)存緩沖配置為MEMORY_0
param.inputSourceSelect = ADC12_A_INPUT_A0; //將輸入A0映射到內(nèi)存緩沖區(qū)0,因?yàn)镻6.0引腳對(duì)應(yīng)A0
param.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC; //正電壓為AVcc
param.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS; //負(fù)電壓為AVss
param.endOfSequence = ADC12_A_NOTENDOFSEQUENCE; //單通道轉(zhuǎn)換
ADC12_A_configureMemory(ADC12_A_BASE,¶m); //
}
//----------------------------- r e a d A D C --------------------------------
unsigned long readADC(void){
//開(kāi)始從MEMORY_0中進(jìn)行單通道連續(xù)轉(zhuǎn)換
ADC12_A_startConversion(ADC12_A_BASE,ADC12_A_MEMORY_0,ADC12_A_SINGLECHANNEL);
while(ADC12_A_isBusy(ADC12_A_BASE) == ADC12_A_BUSY){
// 等待轉(zhuǎn)換完成
}
//讀取ADC轉(zhuǎn)換之后寄存器的值
long result = ADC12_A_getResults(ADC12_A_BASE, ADC12_A_MEMORY_0);
//將其轉(zhuǎn)化為單位為mv的電壓值
return (3220 * result) / 4096; // 3320是測(cè)量的Vss
}
void UART_printf(uint16_t baseAddress, const char *format,...)
{
uint32_t length;
va_list args;
uint32_t i;
char TxBuffer[128] = {0};
va_start(args, format);
length = vsnprintf((char*)TxBuffer, sizeof(TxBuffer)+1, (char*)format, args);
va_end(args);
for(i = 0; i < length; i++)
USCI_A_UART_transmitData(baseAddress, TxBuffer[i]);
}
//9600
void Usart1_Init()
{
//P4.4=UCA1TXD P4.5=UCA1RXD
GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P4, GPIO_PIN5+GPIO_PIN4);
USCI_A_UART_initParam param1 = {0};
param1.selectClockSource = USCI_A_UART_CLOCKSOURCE_SMCLK;
param1.clockPrescalar = 6;
param1.firstModReg = 13;
param1.secondModReg = 0;
param1.parity = USCI_A_UART_NO_PARITY; //無(wú)校驗(yàn)位
param1.msborLsbFirst = USCI_A_UART_LSB_FIRST; //低位先行
param1.numberofStopBits = USCI_A_UART_ONE_STOP_BIT; //1停止位
param1.uartMode = USCI_A_UART_MODE;
param1.overSampling = USCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION;
if (STATUS_FAIL == USCI_A_UART_init(USCI_A1_BASE, ¶m1)){
return;
}
//Enable UART module for operation
USCI_A_UART_enable(USCI_A1_BASE);
//Enable Receive Interrupt
USCI_A_UART_clearInterrupt(USCI_A1_BASE,USCI_A_UART_RECEIVE_INTERRUPT);
USCI_A_UART_enableInterrupt(USCI_A1_BASE,USCI_A_UART_RECEIVE_INTERRUPT);
}
ADC初始化部分
引腳復(fù)位
首先我們復(fù)位P6.0,為什么復(fù)位P6.0。因?yàn)锳DC具有12個(gè)外部采集功能的引腳,如下。
?
ADC12_A_init()
我們這里采用軟件觸發(fā)的方式進(jìn)行ADC采集。軟件觸發(fā)的意思是,需要我們?cè)趯?xiě)程序的時(shí)候,寫(xiě)入一個(gè)ADC開(kāi)始采集的程序,他才會(huì)采集電壓信號(hào)。ADC采集的時(shí)鐘源是使用MODOSC 5MHZ數(shù)字振蕩器。不進(jìn)行分頻?
ADC12_A_init(ADC12_A_BASE,ADC12_A_SAMPLEHOLDSOURCE_SC, ADC12_A_CLOCKSOURCE_ADC12OSC, ADC12_A_CLOCKDIVIDER_1); //軟件觸發(fā),內(nèi)部振蕩器MODCLK作為時(shí)鐘
函數(shù)聲明
函數(shù)聲明如下,這里返回的是一個(gè)布爾值。如果ADC初始化成功了返回STATUS_SUCCESS(也就是1),如果ADC初始化失敗了返回0。我們沒(méi)有進(jìn)行接收他的數(shù)值,一般不需要接收,因?yàn)锳DC初始化失敗的可能性很小。
bool ADC12_A_init (uint16_t baseAddress,uint16_t sampleHoldSignalSourceSelect, uint8_t clockSourceSelect,uint16_t clockSourceDivider)
baseAddress
ADC12只有一個(gè)基地址
ADC12_A_BASE
sampleHoldSignalSourceSelect
選擇觸發(fā)信號(hào)ADC進(jìn)行電壓采集有四種觸發(fā)方式,參數(shù)如下
#define ADC12_A_SAMPLEHOLDSOURCE_SC (ADC12SHS_0)//軟件觸發(fā)
#define ADC12_A_SAMPLEHOLDSOURCE_1 (ADC12SHS_1)//定時(shí)器1觸發(fā)
#define ADC12_A_SAMPLEHOLDSOURCE_2 (ADC12SHS_2)//定時(shí)器2觸發(fā)
#define ADC12_A_SAMPLEHOLDSOURCE_3 (ADC12SHS_3)//定時(shí)器3觸發(fā)
第一種是ADC12SC觸發(fā),也就是軟件觸發(fā)。
二三四種是利用定時(shí)器觸發(fā)ADC采集,定時(shí)器觸發(fā)的好處是,我們不需要占用CPU,讓他自己每隔一段時(shí)間主動(dòng)觸發(fā)ADC采集。但是缺點(diǎn)是,不夠靈活,他不能做到我們想采集電壓就采集,不想采集就不采集。
至于我們想知道這個(gè)ADC12SHSx的定時(shí)器采集是哪幾個(gè)定時(shí)器,不同芯片情況不同,我們需要看引腳功能數(shù)據(jù)表,按Ctrl+F搜索ADC12SHSx即可出現(xiàn)如下(注意,我這里只提供MSP430F5529的,其他型號(hào)的自己去找)。
clockSourceSelec
這個(gè)是選擇ADC的時(shí)鐘源,一般選擇內(nèi)部震蕩器
#define ADC12_A_CLOCKSOURCE_ADC12OSC (ADC12SSEL_0)//內(nèi)部振蕩器
#define ADC12_A_CLOCKSOURCE_ACLK (ADC12SSEL_1)
#define ADC12_A_CLOCKSOURCE_MCLK (ADC12SSEL_2)
#define ADC12_A_CLOCKSOURCE_SMCLK (ADC12SSEL_3)
clockSourceDivider
選擇分頻次數(shù),一般選擇不分頻。
#define ADC12_A_CLOCKDIVIDER_1 (ADC12DIV_0)
#define ADC12_A_CLOCKDIVIDER_2 (ADC12DIV_1)
#define ADC12_A_CLOCKDIVIDER_3 (ADC12DIV_2)
#define ADC12_A_CLOCKDIVIDER_4 (ADC12DIV_3)
#define ADC12_A_CLOCKDIVIDER_5 (ADC12DIV_4)
#define ADC12_A_CLOCKDIVIDER_6 (ADC12DIV_5)
#define ADC12_A_CLOCKDIVIDER_7 (ADC12DIV_6)
#define ADC12_A_CLOCKDIVIDER_8 (ADC12DIV_7)
#define ADC12_A_CLOCKDIVIDER_12 (ADC12DIV_2 + ADC12PDIV)
#define ADC12_A_CLOCKDIVIDER_16 (ADC12DIV_3 + ADC12PDIV)
#define ADC12_A_CLOCKDIVIDER_20 (ADC12DIV_4 + ADC12PDIV)
#define ADC12_A_CLOCKDIVIDER_24 (ADC12DIV_5 + ADC12PDIV)
#define ADC12_A_CLOCKDIVIDER_28 (ADC12DIV_6 + ADC12PDIV)
#define ADC12_A_CLOCKDIVIDER_32 (ADC12DIV_7 + ADC12PDIV)
ADC12_A_enable()
這個(gè)是用于啟動(dòng)ADC的,只需要傳入ADC12_A_BASE就可以啟動(dòng)ADC12_A模塊了。
ADC12_A_setupSamplingTimer()
這個(gè)跟定時(shí)器觸發(fā)有關(guān),所以不講,只要記得第四個(gè)參數(shù)選擇ADC12_A_MULTIPLESAMPLESDISABLE即可。因?yàn)槲覀兪擒浖|發(fā)
ADC12_A_configureMemory()
這個(gè)需要傳入ADC的基地址和結(jié)構(gòu)體,基地址還是相同的。只講結(jié)構(gòu)體
ADC12_A_configureMemoryParam param = {0};
param.memoryBufferControlIndex = ADC12_A_MEMORY_0; //將內(nèi)存緩沖配置為MEMORY_0
param.inputSourceSelect = ADC12_A_INPUT_A0; //將輸入A0映射到內(nèi)存緩沖區(qū)0,因?yàn)镻6.0引腳對(duì)應(yīng)A0
param.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC; //正電壓為AVcc
param.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS; //負(fù)電壓為AVss
param.endOfSequence = ADC12_A_NOTENDOFSEQUENCE; //單通道轉(zhuǎn)換
memoryBufferControlIndex
這個(gè)是負(fù)責(zé)配置我們ADC采集之后的數(shù)值存入哪里。如果是單通道隨便選擇一個(gè)就可以了,建議選擇通道ADC12_A_MEMORY_0
#define ADC12_A_MEMORY_0 (0x0)
#define ADC12_A_MEMORY_1 (0x1)
#define ADC12_A_MEMORY_2 (0x2)
#define ADC12_A_MEMORY_3 (0x3)
#define ADC12_A_MEMORY_4 (0x4)
#define ADC12_A_MEMORY_5 (0x5)
#define ADC12_A_MEMORY_6 (0x6)
#define ADC12_A_MEMORY_7 (0x7)
#define ADC12_A_MEMORY_8 (0x8)
#define ADC12_A_MEMORY_9 (0x9)
#define ADC12_A_MEMORY_10 (0xA)
#define ADC12_A_MEMORY_11 (0xB)
#define ADC12_A_MEMORY_12 (0xC)
#define ADC12_A_MEMORY_13 (0xD)
#define ADC12_A_MEMORY_14 (0xE)
#define ADC12_A_MEMORY_15 (0xF)
?inputSourceSelect
這個(gè)是選擇我們采集的電壓通道口,上面說(shuō)了ADC只有12個(gè)外部信號(hào)采集口。因?yàn)槲覀兩厦鎻?fù)位的是P6.0所以這里是選擇ADC12_A_INPUT_A0。
?可選參數(shù)如下
#define ADC12_A_INPUT_A0 (ADC12INCH_0)
#define ADC12_A_INPUT_A1 (ADC12INCH_1)
#define ADC12_A_INPUT_A2 (ADC12INCH_2)
#define ADC12_A_INPUT_A3 (ADC12INCH_3)
#define ADC12_A_INPUT_A4 (ADC12INCH_4)
#define ADC12_A_INPUT_A5 (ADC12INCH_5)
#define ADC12_A_INPUT_A6 (ADC12INCH_6)
#define ADC12_A_INPUT_A7 (ADC12INCH_7)
#define ADC12_A_INPUT_A8 (ADC12INCH_8)
#define ADC12_A_INPUT_A9 (ADC12INCH_9)
#define ADC12_A_INPUT_TEMPSENSOR (ADC12INCH_10)
#define ADC12_A_INPUT_BATTERYMONITOR (ADC12INCH_11)
#define ADC12_A_INPUT_A12 (ADC12INCH_12)
#define ADC12_A_INPUT_A13 (ADC12INCH_13)
#define ADC12_A_INPUT_A14 (ADC12INCH_14)
#define ADC12_A_INPUT_A15 (ADC12INCH_15)
positiveRefVoltageSourceSelect和negativeRefVoltageSourceSelect
?這兩個(gè)是選擇參考電壓的,可以是內(nèi)部電壓為參考電壓,也可以是外部的。本人只會(huì)內(nèi)部的,所以只講內(nèi)部電壓作為參考電壓。直接如下即可
param.positiveRefVoltageSourceSelect = ADC12_A_VREFPOS_AVCC; //正電壓為AVcc,為3320mV
param.negativeRefVoltageSourceSelect = ADC12_A_VREFNEG_AVSS; //負(fù)電壓為AVss,為0mV
endOfSequence
這個(gè)ADC采集可以是序列通道采集和單通道采集。我這里選擇的是單通道采集,序列通道采集。序列通道采集就是很多個(gè)通道一起采集信號(hào)。我這里只講單通道采集
#define ADC12_A_NOTENDOFSEQUENCE (!(ADC12EOS))//單通道采集
#define ADC12_A_ENDOFSEQUENCE (ADC12EOS)//多通道采集
電壓信號(hào)讀取部分
ADC12_A_startConversion()
這里是開(kāi)啟ADC采集的。
函數(shù)聲明
void ADC12_A_startConversion (uint16_t baseAddress, uint16_t startingMemoryBufferIndex, uint8_t conversionSequenceModeSelect)
baseAddress
同上
startingMemoryBufferIndex
設(shè)置需要開(kāi)始轉(zhuǎn)換的信號(hào)。因?yàn)槲覀冎皩DC采集的信號(hào)存入MEMORY_0,所以這里選擇ADC12_A_MEMORY_0??蛇x參數(shù)如下
#define ADC12_A_MEMORY_0 (0x0)
#define ADC12_A_MEMORY_1 (0x1)
#define ADC12_A_MEMORY_2 (0x2)
#define ADC12_A_MEMORY_3 (0x3)
#define ADC12_A_MEMORY_4 (0x4)
#define ADC12_A_MEMORY_5 (0x5)
#define ADC12_A_MEMORY_6 (0x6)
#define ADC12_A_MEMORY_7 (0x7)
#define ADC12_A_MEMORY_8 (0x8)
#define ADC12_A_MEMORY_9 (0x9)
#define ADC12_A_MEMORY_10 (0xA)
#define ADC12_A_MEMORY_11 (0xB)
#define ADC12_A_MEMORY_12 (0xC)
#define ADC12_A_MEMORY_13 (0xD)
#define ADC12_A_MEMORY_14 (0xE)
#define ADC12_A_MEMORY_15 (0xF)
conversionSequenceModeSelect
這個(gè)是選擇ADC開(kāi)啟的模式。有四種模式,如下。
說(shuō)白了就是一個(gè)多通道和單通道,多通道可以多個(gè)通道一起進(jìn)行ADC電壓信號(hào)采集,比如P6.0和P6.1同時(shí)進(jìn)行ADC電壓采集,而單通道只有一個(gè)引腳進(jìn)行ADC電壓信號(hào)采集。
然后單次采樣和多次采樣的區(qū)別是,如果我們選擇的單次采樣,那么每次進(jìn)行ADC采樣都需要一次觸發(fā)。但是如果是多次采樣,那么我們只需要一次觸發(fā),那么他就會(huì)持續(xù)采樣轉(zhuǎn)換,如果此次電壓轉(zhuǎn)換之后的信號(hào)不馬上讀取,會(huì)被下一次轉(zhuǎn)換之后的信號(hào)覆蓋。因?yàn)槲覀冞@里選擇的軟件觸發(fā),我們我個(gè)人建議選擇單次采樣,這樣我們的電壓采樣轉(zhuǎn)換的信號(hào)就不會(huì)被覆蓋,同時(shí)可以降低功耗。
#define ADC12_A_SINGLECHANNEL (ADC12CONSEQ_0)//單通道單次采樣
#define ADC12_A_SEQOFCHANNELS (ADC12CONSEQ_1)//多通道單次采樣
#define ADC12_A_REPEATED_SINGLECHANNEL (ADC12CONSEQ_2)//單通道循環(huán)采樣
#define ADC12_A_REPEATED_SEQOFCHANNELS (ADC12CONSEQ_3)//多通道循環(huán)采樣
ADC12_A_isBusy()
我們電壓信號(hào)采集之后,需要給他一個(gè)時(shí)間等待將電壓信號(hào)轉(zhuǎn)換為數(shù)字信號(hào)(01這種)。當(dāng)還在轉(zhuǎn)換過(guò)程的時(shí)候,他會(huì)返回ADC12_A_BUSY。所以我們需要持續(xù)調(diào)用這個(gè)函數(shù),等待轉(zhuǎn)換結(jié)束。
ADC12_A_getResults()
獲取當(dāng)前ADC采樣之后的值,因?yàn)槲覀兩厦孢x擇是將轉(zhuǎn)換信號(hào)存入MEMORY_0,所以這里選擇ADC12_A_MEMORY_0。
return
我們最后需要返回一個(gè)值。因?yàn)槲覀兩厦孢x擇的參考電壓為AVcc和AVss。所以電壓范圍為0-3320mV。因?yàn)槲覀冞@個(gè)ADC是一個(gè)12位的,所以寄存器中的存儲(chǔ)最大值是。當(dāng)采集到的電壓為0V時(shí)候,寄存器為0。當(dāng)采集到電壓為3320mV的時(shí)候,寄存器的值為4095。所以我們返回值為,至于為什么是4096,因?yàn)槲覀兪菑?開(kāi)始計(jì)算。文章來(lái)源:http://www.zghlxwxcb.cn/news/detail-604290.html
串口配置
注意,這部分我就提醒一下。我們是需要進(jìn)行浮點(diǎn)數(shù)據(jù)打印的,所以我們看MSP430F5529庫(kù)函數(shù)學(xué)習(xí)——串口的時(shí)候,需要按照浮點(diǎn)數(shù)據(jù)打印這一部分配置!文章來(lái)源地址http://www.zghlxwxcb.cn/news/detail-604290.html
到了這里,關(guān)于MSP430F5529庫(kù)函數(shù)——模數(shù)轉(zhuǎn)換模塊(ADC12)軟件觸發(fā)的文章就介紹完了。如果您還想了解更多內(nèi)容,請(qǐng)?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!