目錄
1--問題描述
2--問題解決
3--代碼
1--問題描述
??????? 基于 Pytorch 使用 VGG16 預(yù)訓(xùn)練模型進(jìn)行分類預(yù)測時,出現(xiàn) GPU 顯存使用量不斷增加,最終出現(xiàn) cuda out of memory 的問題;
??????? 出現(xiàn)上述問題的原因在于:輸入數(shù)據(jù)到網(wǎng)絡(luò)模型進(jìn)行推理時,會默認(rèn)構(gòu)建計(jì)算圖,便于后續(xù)反向傳播進(jìn)行梯度計(jì)算。而構(gòu)建完整的計(jì)算圖,會增加計(jì)算和累積內(nèi)存消耗,從而導(dǎo)致 GPU顯存使用量不斷增加;
??????? 由于博主只使用 VGG16 預(yù)訓(xùn)練模型進(jìn)行分類預(yù)測,不需要訓(xùn)練和反向傳播更新參數(shù),所以不用構(gòu)建完整的計(jì)算圖。
2--問題解決
??????? 在推理代碼中增加以下指令,表明當(dāng)前計(jì)算不需要進(jìn)行反向傳播,即強(qiáng)制不進(jìn)行完整計(jì)算圖的構(gòu)建:
with torch.no_grad():
...
...
3--代碼
??????? 問題代碼:
def extract_rgb_feature(rgb_data):
data = rgb_data.to(device_id[0]) # [40, 40, 3]
data = data.permute(2, 0, 1).unsqueeze(0) # [1, 3, 40, 40]
data = F.interpolate(data, size = (224, 224), mode='nearest').float() #[1, 3, 224, 224]
data = model(data) # [1, linear_Class]
return data
??????? 修正代碼:文章來源:http://www.zghlxwxcb.cn/news/detail-582128.html
def extract_rgb_feature(rgb_data):
with torch.no_grad():
data = rgb_data.to(device_id[0]) # [40, 40, 3]
data = data.permute(2, 0, 1).unsqueeze(0) # [1, 3, 40, 40]
data = F.interpolate(data, size = (224, 224), mode='nearest').float() #[1, 3, 224, 224]
data = model(data) # [1, linear_Class]
return data
??????? 完整代碼:文章來源地址http://www.zghlxwxcb.cn/news/detail-582128.html
from torchvision import models
import torch.nn as nn
import torch
import numpy as np
import cv2
import torch.nn.functional as F
class My_Net(nn.Module):
def __init__(self, linear_Class):
super(My_Net, self).__init__()
self.linear_Class = linear_Class
self.backbone = models.vgg16(pretrained=True) # 以 vgg16 作為 backbone
self.backbone = self.process_backbone(self.backbone) # 對預(yù)訓(xùn)練模型進(jìn)行處理
self.linear1 = nn.Linear(in_features = 4096, out_features = self.linear_Class)
def process_backbone(self, model):
# 固定預(yù)訓(xùn)練模型的參數(shù)
for param in model.parameters():
param.requires_grad = False
# 刪除最后預(yù)測層
del model.classifier[6]
return model
def forward(self, x):
x = self.backbone(x)
x = self.linear1(x)
return x
linear_Class = 2
device_id = [7]
model = My_Net(linear_Class).to(device_id[0]) # 初始化模型
def extract_rgb_feature(rgb_data):
with torch.no_grad():
data = rgb_data.to(device_id[0]) # [40, 40, 3]
data = data.permute(2, 0, 1).unsqueeze(0) # [1, 3, 40, 40]
data = F.interpolate(data, size = (224, 224), mode='nearest').float() #[1, 3, 224, 224]
data = model(data) # [1, linear_Class]
return data
if __name__ == "__main__":
CSub_train_txt_path = '../statistics/CSub_train.txt'
CSub_test_txt_path = '../statistics/CSub_test.txt'
CSub_train_data_path = './2J_rgb_patch_npy_file_40x40/CSub/train/'
CSub_test_data_path = './2J_rgb_patch_npy_file_40x40/CSub/test/'
CSub_train_txt = np.loadtxt(CSub_train_txt_path, dtype = str)
CSub_test_txt = np.loadtxt(CSub_test_txt_path, dtype = str)
CSub_train_save_path = './pre_vgg_feature/2J/CSub/train.npy'
CSub_test_save_path = './pre_vgg_feature/2J/CSub/test.npy'
save_data = []
for (idx, name) in enumerate(CSub_test_txt):
data_path = CSub_test_data_path + name + '.npy'
rgb_data = np.load(data_path) # T, M, N, H, W, C
rgb_data = torch.from_numpy(rgb_data)#.to(device = device_id[0])
T, M, N, H, W, C = rgb_data.shape
Output = torch.zeros(T, M, N, 1, linear_Class)
for t in range(T):
for m in range(M):
for n in range(N):
data = extract_rgb_feature(rgb_data[t, m, n])
Output[t, m, n] = data.cpu()
save_data.append(Output)
print("Processing " + name + ", Done !")
np.save(CSub_test_save_path, save_data)
print("All done!")
到了這里,關(guān)于深度學(xué)習(xí)筆記--解決GPU顯存使用量不斷增加的問題的文章就介紹完了。如果您還想了解更多內(nèi)容,請?jiān)谟疑辖撬阉鱐OY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!