国产 无码 综合区,色欲AV无码国产永久播放,无码天堂亚洲国产AV,国产日韩欧美女同一区二区

殘差網(wǎng)絡(luò)(ResNet) -深度學(xué)習(xí)(Residual Networks (ResNet) – Deep Learning)

這篇具有很好參考價值的文章主要介紹了殘差網(wǎng)絡(luò)(ResNet) -深度學(xué)習(xí)(Residual Networks (ResNet) – Deep Learning)。希望對大家有所幫助。如果存在錯誤或未考慮完全的地方,請大家不吝賜教,您也可以點擊"舉報違法"按鈕提交疑問。

在第一個基于cnn的架構(gòu)(AlexNet)贏得ImageNet 2012比賽之后,每個隨后的獲勝架構(gòu)都在深度神經(jīng)網(wǎng)絡(luò)中使用更多的層來降低錯誤率。這適用于較少的層數(shù),但當我們增加層數(shù)時,深度學(xué)習(xí)中會出現(xiàn)一個常見的問題,稱為消失/爆炸梯度。這會導(dǎo)致梯度變?yōu)?或太大。因此,當我們增加層數(shù)時,訓(xùn)練和測試錯誤率也會增加。
深度學(xué)習(xí)殘差網(wǎng)絡(luò),深度學(xué)習(xí),人工智能,殘差網(wǎng)絡(luò),ResNet

在上圖中,我們可以觀察到56層的CNN在訓(xùn)練和測試數(shù)據(jù)集上的錯誤率都高于20層的CNN架構(gòu)。通過對錯誤率的進一步分析,得出錯誤率是由梯度消失/爆炸引起的結(jié)論。

ResNet于2015年由微軟研究院的研究人員提出,引入了一種名為殘余網(wǎng)絡(luò)的新架構(gòu)。

1、殘差網(wǎng)路

為了解決梯度消失/爆炸的問題,該架構(gòu)引入了殘差塊的概念。在這個網(wǎng)絡(luò)中,我們使用一種稱為跳過連接的技術(shù)。跳過連接通過跳過中間的一些層將一個層的激活連接到其他層。這就形成了一個殘塊。通過將這些剩余的塊堆疊在一起形成Resnets。

這個網(wǎng)絡(luò)背后的方法不是層學(xué)習(xí)底層映射,而是允許網(wǎng)絡(luò)擬合殘差映射。所以我們不用H(x)初始映射,讓網(wǎng)絡(luò)適合。

F(x) := H(x) - x which gives H(x) := F(x) + x.

深度學(xué)習(xí)殘差網(wǎng)絡(luò),深度學(xué)習(xí),人工智能,殘差網(wǎng)絡(luò),ResNet
添加這種類型的跳過連接的優(yōu)點是,如果任何層損害了體系結(jié)構(gòu)的性能,那么將通過正則化跳過它。因此,這可以訓(xùn)練一個非常深的神經(jīng)網(wǎng)絡(luò),而不會出現(xiàn)梯度消失/爆炸引起的問題。本文作者在CIFAR-10數(shù)據(jù)集的100-1000層上進行了實驗。

還有一種類似的方法叫做“高速公路網(wǎng)”,這些網(wǎng)絡(luò)也采用跳線連接。與LSTM類似,這些跳過連接也使用參數(shù)門。這些門決定有多少信息通過跳過連接。然而,這種體系結(jié)構(gòu)并沒有提供比ResNet體系結(jié)構(gòu)更好的準確性。

2、網(wǎng)絡(luò)架構(gòu)

該網(wǎng)絡(luò)采用受VGG-19啟發(fā)的34層平面網(wǎng)絡(luò)架構(gòu),并增加了快捷連接。然后,這些快捷連接將架構(gòu)轉(zhuǎn)換為剩余網(wǎng)絡(luò)。
深度學(xué)習(xí)殘差網(wǎng)絡(luò),深度學(xué)習(xí),人工智能,殘差網(wǎng)絡(luò),ResNet

3、代碼運行

使用Tensorflow和Keras API,我們可以從頭開始設(shè)計ResNet架構(gòu)(包括殘塊)。下面是不同的ResNet架構(gòu)的實現(xiàn)。對于這個實現(xiàn),我們使用CIFAR-10數(shù)據(jù)集。該數(shù)據(jù)集包含10個不同類別(飛機、汽車、鳥、貓、鹿、狗、青蛙、馬、船和卡車)等的60,000張32×32彩色圖像。該數(shù)據(jù)集可以通過keras進行評估。datasets API函數(shù)。

第1步:首先,我們導(dǎo)入keras模塊及其api。這些api有助于構(gòu)建ResNet模型的體系結(jié)構(gòu)。

代碼:導(dǎo)入庫

# Import Keras modules and its important APIs
import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
import numpy as np
import os

第2步:現(xiàn)在,我們設(shè)置ResNet架構(gòu)所需的不同超參數(shù)。我們還對數(shù)據(jù)集做了一些預(yù)處理,為訓(xùn)練做準備。

代碼:設(shè)置訓(xùn)練超參數(shù)

# Setting Training Hyperparameters
batch_size = 32  # original ResNet paper uses batch_size = 128 for training
epochs = 200
data_augmentation = True
num_classes = 10
  
# Data Preprocessing 
subtract_pixel_mean = True
n = 3
  
# Select ResNet Version
version = 1
  
# Computed depth of 
if version == 1:
    depth = n * 6 + 2
elif version == 2:
    depth = n * 9 + 2
  
# Model name, depth and version
model_type = 'ResNet % dv % d' % (depth, version)
  
# Load the CIFAR-10 data.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
  
# Input image dimensions.
input_shape = x_train.shape[1:]
  
# Normalize data.
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
  
# If subtract pixel mean is enabled
if subtract_pixel_mean:
    x_train_mean = np.mean(x_train, axis = 0)
    x_train -= x_train_mean
    x_test -= x_train_mean
  
# Print Training and Test Samples 
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('y_train shape:', y_train.shape)
  
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

第3步:在這一步中,我們根據(jù)epoch的個數(shù)來設(shè)置學(xué)習(xí)率。隨著迭代次數(shù)的增加,學(xué)習(xí)率必須降低以保證更好的學(xué)習(xí)。

代碼:設(shè)置不同epoch數(shù)的LR

# Setting LR for different number of Epochs
def lr_schedule(epoch):
    lr = 1e-3
    if epoch > 180:
        lr *= 0.5e-3
    elif epoch > 160:
        lr *= 1e-3
    elif epoch > 120:
        lr *= 1e-2
    elif epoch > 80:
        lr *= 1e-1
    print('Learning rate: ', lr)
    return lr

第4步:定義基本的ResNet構(gòu)建塊,可以用來定義ResNet V1和V2架構(gòu)。

代碼:基本的ResNet構(gòu)建塊

# Basic ResNet Building Block
  
  
def resnet_layer(inputs,
                 num_filters=16,
                 kernel_size=3,
                 strides=1,
                 activation='relu',
                 batch_normalization=True,
    conv=Conv2D(num_filters,
                  kernel_size=kernel_size,
                  strides=strides,
                  padding='same',
                  kernel_initializer='he_normal',
                  kernel_regularizer=l2(1e-4))
  
    x=inputs
    if conv_first:
        x = conv(x)
        if batch_normalization:
            x = BatchNormalization()(x)
        if activation is not None:
            x = Activation(activation)(x)
    else:
        if batch_normalization:
            x = BatchNormalization()(x)
        if activation is not None:
            x = Activation(activation)(x)
        x = conv(x)
    return x

第5步:定義基于我們上面定義的ResNet構(gòu)建塊的ResNet V1架構(gòu):

代碼:ResNet V1架構(gòu)

def resnet_v1(input_shape, depth, num_classes=10):
  
    if (depth - 2) % 6 != 0:
        raise ValueError('depth should be 6n + 2 (eg 20, 32, 44 in [a])')
    # Start model definition.
    num_filters = 16
    num_res_blocks = int((depth - 2) / 6)
  
    inputs = Input(shape=input_shape)
    x = resnet_layer(inputs=inputs)
    # Instantiate the stack of residual units
    for stack in range(3):
        for res_block in range(num_res_blocks):
            strides = 1
            if stack & gt
            0 and res_block == 0:  # first layer but not first stack
                strides = 2  # downsample
            y = resnet_layer(inputs=x,
                             num_filters=num_filters,
                             strides=strides)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters,
                             activation=None)
            if stack & gt
            0 and res_block == 0:  # first layer but not first stack
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = keras.layers.add([x, y])
            x = Activation('relu')(x)
        num_filters *= 2
  
    # Add classifier on top.
    # v1 does not use BN after last shortcut connection-ReLU
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)
  
    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

第6步:定義基于我們上面定義的ResNet構(gòu)建塊的ResNet V2架構(gòu):

代碼:ResNet V2架構(gòu)

# ResNet V2 architecture
def resnet_v2(input_shape, depth, num_classes=10):
    if (depth - 2) % 9 != 0:
        raise ValueError('depth should be 9n + 2 (eg 56 or 110 in [b])')
    # Start model definition.
    num_filters_in = 16
    num_res_blocks = int((depth - 2) / 9)
  
    inputs = Input(shape=input_shape)
    # v2 performs Conv2D with BN-ReLU on input before splitting into 2 paths
    x = resnet_layer(inputs=inputs,
                     num_filters=num_filters_in,
                     conv_first=True)
  
    # Instantiate the stack of residual units
    for stage in range(3):
        for res_block in range(num_res_blocks):
            activation = 'relu'
            batch_normalization = True
            strides = 1
            if stage == 0:
                num_filters_out = num_filters_in * 4
                if res_block == 0:  # first layer and first stage
                    activation = None
                    batch_normalization = False
            else:
                num_filters_out = num_filters_in * 2
                if res_block == 0:  # first layer but not first stage
                    strides = 2    # downsample
  
            # bottleneck residual unit
            y = resnet_layer(inputs=x,
                             num_filters=num_filters_in,
                             kernel_size=1,
                             strides=strides,
                             activation=activation,
                             batch_normalization=batch_normalization,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_in,
                             conv_first=False)
            y = resnet_layer(inputs=y,
                             num_filters=num_filters_out,
                             kernel_size=1,
                             conv_first=False)
            if res_block == 0:
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(inputs=x,
                                 num_filters=num_filters_out,
                                 kernel_size=1,
                                 strides=strides,
                                 activation=None,
                                 batch_normalization=False)
            x = keras.layers.add([x, y])
  
        num_filters_in = num_filters_out
  
    # Add classifier on top.
    # v2 has BN-ReLU before Pooling
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = AveragePooling2D(pool_size=8)(x)
    y = Flatten()(x)
    outputs = Dense(num_classes,
                    activation='softmax',
                    kernel_initializer='he_normal')(y)
  
    # Instantiate model.
    model = Model(inputs=inputs, outputs=outputs)
    return model

第7步:下面的代碼用于訓(xùn)練和測試我們上面定義的ResNet v1和v2架構(gòu):

代碼:Main函數(shù)

# Main function 
if version == 2:
    model = resnet_v2(input_shape = input_shape, depth = depth)
else:
    model = resnet_v1(input_shape = input_shape, depth = depth)
  
model.compile(loss ='categorical_crossentropy',
              optimizer = Adam(learning_rate = lr_schedule(0)),
              metrics =['accuracy'])
model.summary()
print(model_type)
  
# Prepare model saving directory.
save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'cifar10_% s_model.{epoch:03d}.h5' % model_type
if not os.path.isdir(save_dir):
    os.makedirs(save_dir)
filepath = os.path.join(save_dir, model_name)
  
# Prepare callbacks for model saving and for learning rate adjustment.
checkpoint = ModelCheckpoint(filepath = filepath,
                             monitor ='val_acc',
                             verbose = 1,
                             save_best_only = True)
  
lr_scheduler = LearningRateScheduler(lr_schedule)
  
lr_reducer = ReduceLROnPlateau(factor = np.sqrt(0.1),
                               cooldown = 0,
                               patience = 5,
                               min_lr = 0.5e-6)
  
callbacks = [checkpoint, lr_reducer, lr_scheduler]
  
# Run training, with or without data augmentation.
if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(x_train, y_train,
              batch_size = batch_size,
              epochs = epochs,
              validation_data =(x_test, y_test),
              shuffle = True,
              callbacks = callbacks)
else:
    print('Using real-time data augmentation.')
    # This will do preprocessing and realtime data augmentation:
    datagen = ImageDataGenerator(
        # set input mean to 0 over the dataset
        featurewise_center = False,
        # set each sample mean to 0
        samplewise_center = False,
        # divide inputs by std of dataset
        featurewise_std_normalization = False,
        # divide each input by its std
        samplewise_std_normalization = False,
        # apply ZCA whitening
        zca_whitening = False,
        # epsilon for ZCA whitening
        zca_epsilon = 1e-06,
        # randomly rotate images in the range (deg 0 to 180)
        rotation_range = 0,
        # randomly shift images horizontally
        width_shift_range = 0.1,
        # randomly shift images vertically
        height_shift_range = 0.1,
        # set range for random shear
        shear_range = 0.,
        # set range for random zoom
        zoom_range = 0.,
        # set range for random channel shifts
        channel_shift_range = 0.,
        # set mode for filling points outside the input boundaries
        fill_mode ='nearest',
        # value used for fill_mode = "constant"
        cval = 0.,
        # randomly flip images
        horizontal_flip = True,
        # randomly flip images
        vertical_flip = False,
        # set rescaling factor (applied before any other transformation)
        rescale = None,
        # set function that will be applied on each input
        preprocessing_function = None,
        # image data format, either "channels_first" or "channels_last"
        data_format = None,
        # fraction of images reserved for validation (strictly between 0 and 1)
        validation_split = 0.0)
  
    # Compute quantities required for featurewise normalization
    # (std, mean, and principal components if ZCA whitening is applied).
    datagen.fit(x_train)
  
    # Fit the model on the batches generated by datagen.flow().
    model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size),
                        validation_data =(x_test, y_test),
                        epochs = epochs, verbose = 1, workers = 4,
                        callbacks = callbacks)
  
# Score trained model.
scores = model.evaluate(x_test, y_test, verbose = 1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

4、結(jié)果與總結(jié)

在ImageNet數(shù)據(jù)集上,作者使用了152層的ResNet,其深度是VGG19的8倍,但參數(shù)仍然較少。在ImageNet測試集上,這些ResNets的集合產(chǎn)生的錯誤率僅為3.7%,這一結(jié)果贏得了ILSVRC 2015競賽。在COCO對象檢測數(shù)據(jù)集上,由于它的深度表示,也產(chǎn)生了28%的相對改進。
深度學(xué)習(xí)殘差網(wǎng)絡(luò),深度學(xué)習(xí),人工智能,殘差網(wǎng)絡(luò),ResNet文章來源地址http://www.zghlxwxcb.cn/news/detail-551312.html

  • 上面的結(jié)果表明,快捷連接將能夠解決增加層數(shù)所帶來的問題,因為當我們將層數(shù)從18層增加到34層時,ImageNet驗證集上的錯誤率也會與普通網(wǎng)絡(luò)不同而降低。
    深度學(xué)習(xí)殘差網(wǎng)絡(luò),深度學(xué)習(xí),人工智能,殘差網(wǎng)絡(luò),ResNet
  • 下面是ImageNet測試集的結(jié)果。ResNet的前5名錯誤率為3.57%,是最低的,因此ResNet架構(gòu)在2015年ImageNet分類挑戰(zhàn)中排名第一。
    深度學(xué)習(xí)殘差網(wǎng)絡(luò),深度學(xué)習(xí),人工智能,殘差網(wǎng)絡(luò),ResNet

到了這里,關(guān)于殘差網(wǎng)絡(luò)(ResNet) -深度學(xué)習(xí)(Residual Networks (ResNet) – Deep Learning)的文章就介紹完了。如果您還想了解更多內(nèi)容,請在右上角搜索TOY模板網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章,希望大家以后多多支持TOY模板網(wǎng)!

本文來自互聯(lián)網(wǎng)用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如若轉(zhuǎn)載,請注明出處: 如若內(nèi)容造成侵權(quán)/違法違規(guī)/事實不符,請點擊違法舉報進行投訴反饋,一經(jīng)查實,立即刪除!

領(lǐng)支付寶紅包贊助服務(wù)器費用

相關(guān)文章

  • 論文筆記:Deep Spatio-Temporal Residual Networks for Citywide Crowd FlowsPrediction

    論文筆記:Deep Spatio-Temporal Residual Networks for Citywide Crowd FlowsPrediction

    2017 AAAI 使用時空殘差網(wǎng)絡(luò)ST-ResNet 進行 城市區(qū)域流入流出客流量預(yù)測 城市客流流入流出 根據(jù)經(jīng)緯度將城市劃分為網(wǎng)格 I×J ? 空間依賴性 時間依賴性 外部影響 北京出租車數(shù)據(jù)+紐約自行車數(shù)據(jù) 評價指標:RMSE ? ? ?

    2024年02月16日
    瀏覽(27)
  • 經(jīng)典神經(jīng)網(wǎng)絡(luò)論文超詳細解讀(五)——ResNet(殘差網(wǎng)絡(luò))學(xué)習(xí)筆記(翻譯+精讀+代碼復(fù)現(xiàn))

    經(jīng)典神經(jīng)網(wǎng)絡(luò)論文超詳細解讀(五)——ResNet(殘差網(wǎng)絡(luò))學(xué)習(xí)筆記(翻譯+精讀+代碼復(fù)現(xiàn))

    《Deep Residual Learning for Image Recognition》這篇論文是何愷明等大佬寫的,在深度學(xué)習(xí)領(lǐng)域相當經(jīng)典,在2016CVPR獲得best paper。今天就讓我們一起來學(xué)習(xí)一下吧! 論文原文:https://arxiv.org/abs/1512.03385 前情回顧: 經(jīng)典神經(jīng)網(wǎng)絡(luò)論文超詳細解讀(一)——AlexNet學(xué)習(xí)筆記(翻譯+精讀)

    2024年02月08日
    瀏覽(23)
  • 可信深度學(xué)習(xí)Trustworthy Deep Learning相關(guān)論文

    可信深度學(xué)習(xí)Trustworthy Deep Learning相關(guān)論文

    Survey An Overview of Catastrophic AI Risks. [paper] Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation. [paper] A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy. [paper] Adversarial Machine Learning: A Systemati

    2024年02月13日
    瀏覽(24)
  • AIGC實戰(zhàn)——深度學(xué)習(xí) (Deep Learning, DL)

    AIGC實戰(zhàn)——深度學(xué)習(xí) (Deep Learning, DL)

    深度學(xué)習(xí) ( Deep Learning , DL ) 是貫穿所有生成模型 ( Generative Model ) 的共同特征,幾乎所有復(fù)雜的生成模型都以深度神經(jīng)網(wǎng)絡(luò)為核心,深度神經(jīng)網(wǎng)絡(luò)能夠?qū)W習(xí)數(shù)據(jù)結(jié)構(gòu)中的復(fù)雜關(guān)系,而不需要預(yù)先提取數(shù)據(jù)特征。在本節(jié)中,我們將介紹深度學(xué)習(xí)基本概念,并利用 Keras 構(gòu)建深度神

    2024年02月08日
    瀏覽(25)
  • Lecture 8 Deep Learning for NLP: Recurrent Networks

    Lecture 8 Deep Learning for NLP: Recurrent Networks

    Problem of N-gram Language Model N-gram 語言模型的問題 Cen be implemented using counts with smoothing 可以用平滑計數(shù)實現(xiàn) Can be implemented using feed-forward neural networks 可以用前饋神經(jīng)網(wǎng)絡(luò)實現(xiàn) Problem: limited context 問題:上下文限制 E.g. Generate sentences using trigram model: 例如:使用 trigram 模型生成句子

    2024年02月09日
    瀏覽(45)
  • 自然語言處理(六): Deep Learning for NLP: Feedforward Networks

    自然語言處理(六): Deep Learning for NLP: Feedforward Networks

    目錄 1.?Deep Learning 1.2?Feed-forward NN 1.3?Neuron 1.4?Matrix Vector Notation?矩陣向量表示法 1.5?Output Layer 1.6?Learning from Data 1.7?Regularisation 正則化 1.8?Dropout 2. Applications in NLP 2.1?Topic Classification 2.2 Topic Classification - Training 2.3 Topic Classification - Prediction 2.4 Topic Classification - Improvements 2.5

    2023年04月09日
    瀏覽(22)
  • 自然語言處理(七): Deep Learning for NLP: Recurrent Networks

    自然語言處理(七): Deep Learning for NLP: Recurrent Networks

    目錄 1.?N-gram Language Models 2. Recurrent Neural Networks 2.1 RNN Unrolled 2.2 RNN Training 2.3 (Simple) RNN for Language Model 2.4 RNN Language Model: Training 2.5 RNN Language Model: Generation 3.?Long Short-term Memory Networks 3.1?Language Model… Solved? 3.2 Long Short-term Memory (LSTM) 3.3 Gating Vector 3.4 Simple RNN vs. LSTM 3.5 LSTM: Forget

    2023年04月13日
    瀏覽(47)
  • 深度學(xué)習(xí)筆記(kaggle課程《Intro to Deep Learning》)

    深度學(xué)習(xí)筆記(kaggle課程《Intro to Deep Learning》)

    深度學(xué)習(xí)是一種機器學(xué)習(xí)方法,通過構(gòu)建和訓(xùn)練深層神經(jīng)網(wǎng)絡(luò)來處理和理解數(shù)據(jù)。它模仿人腦神經(jīng)系統(tǒng)的工作方式,通過多層次的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)來學(xué)習(xí)和提取數(shù)據(jù)的特征。深度學(xué)習(xí)在圖像識別、語音識別、自然語言處理等領(lǐng)域取得了重大突破,并被廣泛應(yīng)用于人工智能技術(shù)中

    2024年02月13日
    瀏覽(25)
  • 神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)(Neural Networks: Learning)

    神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)(Neural Networks: Learning)

    案例:假設(shè)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練樣本有??個,每個包含一組輸入??和一組輸出信號??,??表示神經(jīng)網(wǎng)絡(luò)層數(shù),????表示每層的 neuron 個數(shù)(????表示輸出層神經(jīng)元個數(shù)),????代表最后一層中處理單元的個數(shù)。 將神經(jīng)網(wǎng)絡(luò)的分類定義為兩種情況:二類分類和多類分類, 二類分

    2024年01月24日
    瀏覽(21)
  • 解鎖深度表格學(xué)習(xí)(Deep Tabular Learning)的關(guān)鍵:算術(shù)特征交互

    解鎖深度表格學(xué)習(xí)(Deep Tabular Learning)的關(guān)鍵:算術(shù)特征交互

    近日,阿里云人工智能平臺PAI與浙江大學(xué)吳健、應(yīng)豪超老師團隊合作論文《Arithmetic Feature Interaction is Necessary for Deep Tabular Learning》正式在國際人工智能頂會AAAI-2024上發(fā)表。本項工作聚焦于深度表格學(xué)習(xí)中的一個核心問題:在處理結(jié)構(gòu)化表格數(shù)據(jù)(tabular data)時,深度模型是否

    2024年04月17日
    瀏覽(22)

覺得文章有用就打賞一下文章作者

支付寶掃一掃打賞

博客贊助

微信掃一掃打賞

請作者喝杯咖啡吧~博客贊助

支付寶掃一掃領(lǐng)取紅包,優(yōu)惠每天領(lǐng)

二維碼1

領(lǐng)取紅包

二維碼2

領(lǐng)紅包